Path Toward a Scalable Lunar Volatiles Miner Prototype

National Council of Space Grant Directors' Fall Meeting

Charleston,SC 10/14/2013

Aaron D.S. Olson Fusion Technology Institute, University of Wisconsin-Madison

Outline

- Uses of Lunar Volatiles
 - Helium-3 Fusion
 - Life Support Volatiles
- Lunar Volatiles Miner Designs
 - Operation of the Mark-III
- Development Path
- The Mark IV Miner Objectives

Helium-3 Enables Clean Nuclear Fusion

D³He and ³He³He Fusion Cycles Have Been Demonstrated in a Fusion Technology Institute Lab

10/14/2013

Terrestrial Helium-3 Resources

Three main sources of Helium-3 on the Earth

Atmosphere:

Helium-3 concentration in atmosphere is $\approx 7 \times 10^{-12}$ by volume. Total in the entire atmosphere is $\approx 4,000$ metric tonnes

Natural Gas: potentially as much as 280 kg in reserves and speculative sources that are not being tapped

Decay of Tritium: Tritium decays into Helium-3 after 12.3 years, about 1 kg/yr of Helium-3 is produced

Shortage: increased usage in the last decade has nearly depleted the supply of Helium-3 from Tritium decay (down to < 10 kg as of 2010) Also drove price from (~\$1,000,000/kg) to (> \$7,000,000/kg)

10/14/2013

The Solar Wind Volatiles

Ionized solar wind is deflected by the Earth's Magnetosphere

Composition : Mostly Hydrogen •Biogenic elements: H, C, N •Noble gases: He, Ar, Kr, Xe, Ne

Solar Wing Volatiles (SWV) embedded in top few hundred angstroms

Meteoritic bombardment churns SWV several meters deep into regolith

SWV Retained preferentially in regions with higher Titanium content (Ilmenite: $FeTiO_3$)

10/14/2013

Lunar Helium-3 Enables Clean Nuclear Fusion

- Lunar ³He concentration measured in Apollo 11, 12, 14, 15, 16, & 17 plus USSR Luna 16 & 20 samples.
- Analysis indicates that ~10⁹ kg of ³He exists near the lunar surface, which equals ~1000 years of world energy supply.
- 40 tonnes of ³He would supply the entire 2012 US electricity needs.
- ~10 kg ³He (200 MW-y fusion energy) is accessible on Earth for R&D.
- A small fraction of the inventory (~10²³ kg) of ³He in the Solar System's gas giant planets would supply world energy needs for far longer than the age of the universe.

L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* **10**, 167 (1986).

10/14/2013

³He Mining Produces Valuable Volatile By-Products

Three Wisconsin Lunar ³He Miner Designs Completed

*Enclosure, solar collector, and RF rectenna not shown

10/14/2013

Volatile Flow and Collection Schematic

10/14/2013

Excavator

Separation

Transportation

Components

Electronics

DEPARTMENT OF **Engineering** Physics UNIVERSITY OF WISCONSIN-MADISON

10/14/2013

Selected Annual Miner Parar	neters			
³ He extraction (kg)	66*			
Mining time (hr): 90 % of lunar days	3942			
Excavation rate (tonnes/hr)	1258			
Processing rate (tonnes/hr)	556			
Excavation depth (m)	3.0			
Forward miner speed (m/hr)	23			
Area excavated (km ²)	1.0			
Thermal process power (MW)	12.3			
Operating power (<mark>M-II</mark> , M-III) (kWe)	200, 350			
Miner mass (M–II, M–III) (tonnes)	18, 9.9			
*assuming a 20ppb ³ He grade, however only 10ppb was used by Sviatoslavsky and Gajda in their miner designs leading to reported annual				

acquisition of ³He at 33 kg

Potential Lunar Mining Roadmap

Ground Truth ~2013-2020

- No surface assets
- Limited landing capability
- Limited material return

(NASA RESOLVE)

Demo and Small Scale ~2020-2030

- Limited surface assets
- Matured landing capability
- Matured material return

Industrial Mining ~Post 2030

- Matured surface assets
- Advanced landing capability
- Advanced material

(UW Mark-II concept)

(Demonstration scale concept)

International Civil Agencies and New Space Companies are Developing Lunar Capabilities

- NASA: Resource Prospector, Lunabotics, Morpheus lander
- **CNSA:** Chang'e 3,4…
- **ISRO:** Chandrayaan-2
- Roscosmos: Luna 25,26…
- **JAXA:** SELENE 2,3…
- Google Lunar X-Prize
- 20 proposed lunar missions (2013-21)

Aaron D.S. Olson National Council of Space Grant Directors' Fall Meeting

DEPARTMENT OF Engineering Physics UNIVERSITY OF WISCONSIN-MADISON

Astrobotic Technologies Polaris

NASA Morpheus

CNSA Chang'e-3 Lander and

Mark-IV: The First ³He and W Volatiles Miner Prototype

Objectives of the Mark-IV Miner Prototype Demonstrate ³He extraction process

- Produce volatiles for life support and other in-space needs
 - O₂, H₂O, H₂, ⁴He, N₂, CO₂,CO, CH₄
- Scalable to meet lunar exploration and space development needs prior to operational ³He fusion power plants

They Said It Couldn't be Done

"Space travel is utter bilge." –Dr. Richard Wooley, Astronomer Royal, space advisor to the British government, 1956

Upcoming Lunar ³He Fusion Book

Follow-on to *Return to the Moon* by Dr. Harrison Schmitt

Discusses

- Increasing need for power worldwide
- Potential role of ³He
 Fusion technology
- Lunar Bases and Resources
- Legal Regimes for Lunar Mining
- Economics of ³He
 Procurement
- Space Applications of ³He Fusion
- Current Lunar Initiatives

10/14/2013

Authors: Dr. Harrison Schmitt, Dr. Gerald Kulcinski, Dr. John Santarius, Aaron Olson

Thank you Wisconsin Space Grant Consortium!

Aaron D.S. Olson Fusion Technology Institute University of Wisconsin-Madison doloon?@wieg odu

DEPARTMENT OF

Engineering Physics

UNIVERSITY OF WISCONSIN-MADISON

Mining Maria Regolith Could Provid Life Support to Crews in Space

			_			
Volatiles <u>Delivered</u> to ISS in 2012*		Products of Heating Mare Regolith to 700 °C				
		Mass/crew		Mass evolved per	Mass evolved	
Volatile	Mass (kg)	member (kg) #		tonne of regolith	per kg of ³ He	
Air	38	6.3	Volatile	mined (g)**	evolved (kg)	
Nitrogen^	30	5.0	H ₂	43	6100	
Oxygen	253	42.2	⁴ He	22	3100	
Water	1965	327.5	³ He	0.007	1	
*8 Cargo resupply missions conducted		H ₂ O	23	3300		
by the Russian Progress Furopean		N ₂	4.0	500		
ATV Japanese HTV and Space-X		CH ₄	11	1600		
Dragon		СО	13.5	1900		
$^{\circ}$ Assumes $\sim 78\%$ N air composition		CO ₂	12	1700		
# 6 Crow more or loss constant in 2012			**After beneficiation, 450 kg of regolith is			
<u>FOCIEW INDIE OF IESS CONSTANT IN 2012</u>						

•Delivered Oxygen is not equal to the metabolic requirement of 0.84 kg O2/day

•0.84 kg Oxygen is for the average adult American male

•Water is electrolyzed on board for Oxygen production

•Delivered water is not equal to the requirement of 3.9 kg H_2O /crew member per day

•ECLSS water recycling system (urine filtration)

The Concentration of Lunar Volatiles in the Apollo Soil Samples Covers a Wide Range of Values

The Concentration of ³He in Apollo-15 Drill Core Samples Remains Reasonably Constant With Depth

RESEARCHING LUNAR VOLATILES MINING

Advisor: Dr. Gerald Kulcinski FTI Director

