Hidden Impact Basins and the Early Bombardment History of the Moon

Heather M. Meyer
School of Earth & Space Exploration
Arizona State University/LROC

Herbert V. Frey
Planetary Geodynamics Laboratory
NASA Goddard Space Flight Center
Late Heavy Bombardment

- a.k.a. ‘Lunar Cataclysm’
- 3.8-4.1 billion years ago
- Accretion Model
 - Cleaning up the Solar System
- Nice Model
 - Spike in bombardment due to migrating orbits and scattering of Trans-Neptunian Objects
Who Cares?

Everyone! (They just don’t know it yet.)

- Major implications for early Earth
- Implications for models used in the search for life
Goals

• To use a new crustal thickness model to produce the most complete inventory of large impact basins (>300 km diameter) on the Moon possible for age-dating
 – To understand the “Late Heavy Bombardment” (LHB) of the Moon
 – To provide constraints on the LHB for the early Earth
Background

- Previously identified basins tested with a new crustal thickness model
 - 45 Named features
 - 61 Quasi-Circular Depressions (QCDs)
 - Identified by old and new topography
 - 27 Circular Thin Areas (CTAs)
 - Identified through an older crustal thickness model
Crustal Thickness Models

- **Previous Model**
 - Clementine’s Laser Image Detection and Ranging (LIDAR) topography
 - Lunar Prospector gravity measurements

- **2011 Model**
 - LRO’s Lunar Orbiter Laser Altimeter (LOLA) topography
 - Kaguya gravity measurements
Categorization of Candidate Basins

Candidate basins are assigned a Crustal Thickness Expression (CTE) as an indication of the strength of their crustal thickness signature.

5 = Very strong circular signature with obvious rim structure (thickening)
3 = Circular signature with very little to no obvious rim structure
1 = Weak signature, often non-circular
0 = No obvious depression or thinned crust
Candidate Scoring

<table>
<thead>
<tr>
<th>BASIN NAME</th>
<th>SYM</th>
<th>LAT</th>
<th>W LONG</th>
<th>TE*</th>
<th>CTE**</th>
<th>Sum</th>
<th>TE*</th>
<th>CTE**</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutus Vlacq</td>
<td>MV</td>
<td>-52.04</td>
<td>339.39</td>
<td>2</td>
<td>2</td>
<td>4.0</td>
<td>2</td>
<td>3</td>
<td>5.0</td>
</tr>
<tr>
<td>Serenitatis</td>
<td>Se</td>
<td>27.58</td>
<td>341.01</td>
<td>5</td>
<td>5</td>
<td>10.0</td>
<td>5</td>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td>Nectaris</td>
<td>Ne</td>
<td>-15.75</td>
<td>325.44</td>
<td>5</td>
<td>5</td>
<td>10.0</td>
<td>5</td>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td>Fecunditatis</td>
<td>Fe</td>
<td>-1.8</td>
<td>305.82</td>
<td>3</td>
<td>4</td>
<td>7.0</td>
<td>3</td>
<td>4</td>
<td>7.0</td>
</tr>
<tr>
<td>Crisium</td>
<td>Cr</td>
<td>16.65</td>
<td>301.98</td>
<td>4</td>
<td>5</td>
<td>9.0</td>
<td>5</td>
<td>5</td>
<td>10.0</td>
</tr>
<tr>
<td>Sikorsky-Rittenhouse</td>
<td>SR</td>
<td>-67.93</td>
<td>249.06</td>
<td>2</td>
<td>-2</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aamundson-Gaswhindt</td>
<td>AG</td>
<td>-81.05</td>
<td>237.61</td>
<td>4</td>
<td>0</td>
<td>4.0</td>
<td>4</td>
<td>4</td>
<td>8.0</td>
</tr>
<tr>
<td>CTA-7</td>
<td>C7</td>
<td>47.5</td>
<td>264.22</td>
<td>1</td>
<td>3</td>
<td>4.0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>CTA-12</td>
<td>C12</td>
<td>-36.82</td>
<td>231.38</td>
<td>2</td>
<td>5</td>
<td>7.0</td>
<td>2</td>
<td>3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

*TE= Topographic Expression

**CTE=Crustal Thickness Expression
Changes in Score
Lorentz

Old CT

New CT
New Candidate Basins

New CT

LOLA

HM-2

HM-11
New Candidate Basins

HM-15

HM-6

New CT

LOLA
Summary

- A new crustal thickness model was applied to 113 large (D>300 km) candidate lunar basins derived from old and new topographic, old crustal thickness, and photogeologic data.

- Most basins were verified, but several candidate basins have been eliminated as new candidates have arisen.
 - Of the original 113 basins, 26 removed
 - In addition to the original list, 9 entirely new CTA’s

- The coolest part: TWO PEAKS!
Thank you for your support!

(No, seriously… I couldn’t have done it without you!)