Ballooning for High School Teachers and University Level Students

T.G. Guzik

Louisiana Space Consortium

National Council of Space Grant Directors Meeting

These programs involve personnel from multiple institutions

Louisiana Space Consortium (LaSPACE)

NASA Wallops Flight Facility - Balloon Program Office (BPO)
D. Gregory, G. Garde, J.A. Haggard, D. Fairbrother

NASA Wallops Flight Facility – Education Team
J. Winterton, L. Sherman

Columbia Scientific Balloon Facility (CSBF)
D.R.J. Ball, W. Stepp, J. Juneau, J. Jones, R. Salter, plus many other unsung CSBF rigging, balloon launch, electronics and support personnel.
Ballooning for High School Teachers

• In 2011 a team was organized to bring a scientific ballooning experience to high school teachers across the nation; the Wallops Balloon Experience for Educators (WBEE)
 – Louisiana Space Consortium (LaSPACE): Lead in developing the workshop content, materials, agenda, teaching and flight operations.
 – Columbia Scientific Balloon Facility (CSBF): Lead in workshop material preparation, facility organization and launch operations.

• Based upon the highly successful LaSPACE Aerospace Catalyst Experiences for Students (LaACES)
 – Focused on building a small payload designed to measure temperature, pressure and humidity as a function of altitude.

• Four day workshop held in 2011 and 2012
 – July 12 through July 15, 2011 included 30 high school teachers
 – July 24 through July 27, 2012 included 24 high school teachers
The General Workshop Agenda

• **Monday:** Workshop setup at CSBF, complete last minute details, welcome and orientation of workshop participants.

• **Tuesday:** Begin payload construction
 – Divide participants in teams of three: mechanical, electronics, software

• **Wednesday:** Complete payload construction
 – Prepare balloon string beacons and payloads
 – Review flight operations and weather forecast

• **Thursday:** Flight operations
 – Launch at about 7:30 am and follow flight through recovery
 – Return to CSBF and perform data analysis

• **Friday:** Wrap up
 – Education resources, Teacher planning session
Teachers had to complete assembly of payload kit

- Learned soldering, programming, sensor calibration, battery assembly and Styrofoam box construction.
Payloads were completed and prepared for flight
A good time was had by all!
The WBEE program received a NASA award

National Aeronautics and Space Administration

Presents the

RHG Exceptional Achievement OUTREACH - TEAM

to

Wallops Education Flight Opportunities

For exceptional achievement in implementing education flight opportunities for teachers that will improve STEM education across the United States.

Gregory Guzik

Signed this twenty-ninth day of November
Two Thousand Eleven

Robert Strain
Director, Goddard Space Flight Center
The High Altitude Student Platform (HASP)

• Operates as a partnership between the NASA Balloon Program Office (BPO) and Louisiana Space Consortium (LaSPACE)
 – BPO provides balloon, launch and flight services
 – LaSPACE maintains HASP & interfaces with the student payloads
• Developed in 2005 to address a looming crisis in training the next generation of aerospace scientists and engineers.
• Provides a regular flight opportunity for student groups across the world.
• During October 2011 a NASA Press Release announced the HASP 2012 flight opportunity
 – By the Dec. 2011 deadline, 17 applications for HASP seats were received.
 – Selected 12 payloads for flight plus one alternate.
• A similar NASA Press Release for HASP 2013 was distributed on October 19, 2012.
Major HASP Features

• Fly to an altitude > 36 km for a duration of ~20 hours

• Includes two major components
 – The upper frame (HASP) supports the multiple payloads
 – The bottom frame (CSBF frame) to support the balloon vehicle communication and support structure

• HASP includes a standard interface for each payload
 – Eight “small” experiments on booms and four “large” experiments on top
 – The HASP control electronics multiplexes and isolates the 12 experiments from the CBSF systems.

• Include CosmoCam for real time video during launch & flight

(Student payloads mounted on HASP 2012)
HASP 2012 Institutions and Payloads

<table>
<thead>
<tr>
<th>Institution</th>
<th>Payload Title / Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston University, Georgia Institute of Technology</td>
<td>Student Platform Integrated First Flight (SPIFF) - Test of CubeSat interface technology</td>
</tr>
<tr>
<td>Gannon University</td>
<td>High Altitude Radiation Detector (GU-HARD-PL02)</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>High Altitude X-Ray Detector Testbed</td>
</tr>
<tr>
<td>Montana State University</td>
<td>Single Event Effect Detector</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>University of Maryland StratoPigeon III (UMDSP III) - Test of LDB recoverable data capsule</td>
</tr>
<tr>
<td>University of North Dakota, University of North Florida</td>
<td>Measurement of the ozone profile in the stratosphere using nanocomposite sensor</td>
</tr>
<tr>
<td>Arizona State University</td>
<td>High Altitude Turbine Survey (HATS)</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>HELIOS (Hydrogen-alpha Exploration with Long Infrared Observation Systems of the Sun)</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td>Sampling for Microorganisms in the High (SMITH) Atmosphere</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td>Terrestrial Gamma-Ray Flash (TGF)</td>
</tr>
<tr>
<td>InterAmerican University of Puerto Rico</td>
<td>ARIES-DYNAMICS - Test of CubeSat ADS system</td>
</tr>
</tbody>
</table>
HASP 2012 Flight Profile

Launch: 9/1/2012 14:19 UTC
Float: 9/1/2012 16:28 UTC
Terminate: 9/2/2012 01:17 UTC
Impact: 9/2/2012 02:07 UTC
Ave Float Altitude: 37,180 m
Float Duration: 8.8 hours
HASP 2012 Flight Path
HASP has involved students from more than 30 institutions in North America

HASP Activities Status as of October 2012

- Alberta, Canada: 1
- States Utilized HASP
- States have Not Utilized HASP

Slide courtesy of NASA BPO
Many individual experiments have flown on HASP over the years

- HASP was flown each year (except 2010) from 2006 through 2012
- The 2010 flight was delayed until August 2011
- To date close to 500 students from 31 institutions across 17 states plus Puerto Rico and Alberta, Canada have been involved in developing a HASP experiment.
- More than 80% of payloads flown on HASP are successful.

<table>
<thead>
<tr>
<th>Year</th>
<th>Launch Date</th>
<th>Float Duration (hours)</th>
<th>Students</th>
<th>Payloads</th>
<th>Accepted</th>
<th>Flown</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>September 4, 2006</td>
<td>15.0</td>
<td>25</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>September 2, 2007</td>
<td>16.5</td>
<td>70</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>September 15, 2008</td>
<td>31.8</td>
<td>96</td>
<td>13</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>September 11, 2009</td>
<td>12.0</td>
<td>50</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>August 31, 2011</td>
<td>8.0</td>
<td>78</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>September 8, 2011</td>
<td>15.7</td>
<td>117</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>September 1, 2012</td>
<td>8.8</td>
<td>62*</td>
<td>14</td>
<td>11</td>
<td>10*</td>
<td></td>
</tr>
<tr>
<td>Total 06 to 12</td>
<td>107.8</td>
<td>498</td>
<td>78</td>
<td>60</td>
<td>49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HASP 2013 Call for Payloads

CFP document and application materials is available on the “Participant Info” tab of the HASP website

http://laspace.lsu.edu/hasp/Participantinfo.php

Q&A Teleconference November 16, 2012 at 10 am (central time)
Dial 1-866-717-2684, ID 6879021

Email PDF version of application by 11:59 pm (central time) on December 14, 2012 to guzik@phunds.phys.lsu.edu

Notification of successful applicants by mid-January 2013