New Views of Exoplanets from NASA's Kepler mission

Dan Fabrycky

University of Chicago

Planets are common

Transits/Kepler

Doppler/HARPS

(Petigura, Howard, Marcy 2013)

(Mayor et al. 2011)

...and small planets are the most common

Solar System properties

- Rocky planets in close (<2 AU)
- Gas giant planets where volatile compounds could solidify (5.2,9.5 AU)
- "Ice" giant planets in the outskirts (19,30 AU)
- Low eccentricities (mostly <0.1)
- Flat relative to each other (~2 degrees of tilt)
- No orbital resonances

Radial Velocity Multiple Planets

Resonances

Kepler Mission (*NASA*, 2009-2013*)

*resurrection being planned

- A search for Earth-like planets in transit
- Photometry of 150,000 stars
- ~20 ppm in 6 hours; 30 minute cadence
- In heliocentric orbit

The Kepler Orrery III t[BJD] = 2455215

715 Newly Verified Planets Means *Kepler* has found the majority of Exoplanets (961 of ~1790)

Full architectures of Exoplanetary Systems?

Basic facts:

- Planet number
- Masses
- Radii

Dynamical properties:

- Periods (n.b.: their ratios)
- Eccentricities
- Mutual Inclinations

Transits	Radial Velocities
w/ TTV	'
w/ TTV	•
•	
V V	~
w/ TTV	~
w/ Duration Variations	

TTV = Transit timing Variation

>~100 significant TTV cases: Mazeh et al. 2013)

Dynamics: Orbital Timescales

Dynamics: Resonant Orbits

$$P/P_1 = 2.00$$

KOI-806 = Kepler-30

Fabrycky, Ford, Steffen et al. 2012

KOI-806 = Kepler-30

Fabrycky, Ford, Steffen et al. 2012

Super-Earths and Mini-Neptunes

Lissauer, Fabrycky, Ford et al. 2011

Planet	Kepler-90 b	Kepler-90 c	Kepler-90 d	Kepler-90 e	Kepler-90 f	Kepler-90 g	Kepler-90 h
KOI #	KOI-351.06	KOI-351.05	KOI-351.03	KOI-351.04	KOI-351.07	KOI-351.02	KOI-351.01
$\overline{T_0}$	$70.6797 \pm$	$72.5208 \pm$	$91.9622 \pm$	$67.2952 \pm$	$62.791~\pm$	$79.8448 \pm$	$73.4992 \pm$
(BJD-2454900)	0.0012	0.0038	0.0035	0.0079	0.011	0.0015	0.00085
P	$7.008214 \pm$	$8.718397 \pm$	$59.73700 \pm$	$91.94080 \pm$	$124.9134~\pm$	$210.70287 \pm$	$331.59940 \pm$
[days]	0.000102	0.000324	0.00027	0.00078	0.0013	0.00037	0.00032
duration [hr]	3.72 ± 0.02	4.02 ± 0.02	7.90 ± 0.06	9.16 ± 0.08	10.03 ± 0.11	11.38 ± 0.06	13.21 ± 0.04
depth [%]	0.0135 ± 0.0009	0.0175 ± 0.0009	0.0580 ± 0.0017	0.0502 ± 0.0019	0.0642 ± 0.0032	0.4225 ± 0.0028	0.8246 ± 0.0055
R_p/R_\star	0.0108 ± 0.0004	0.0122 ± 0.0003	0.0223 ± 0.0004	0.0208 ± 0.0004	0.0234 ± 0.0006	0.0605 ± 0.0005	0.0840 ± 0.0005
b	0.02 ± 0.28	-0.00 ± 0.26	0.22 ± 0.13	0.01 ± 0.28	-0.00 ± 0.25	-0.01 ± 0.24	-0.04 ± 0.23
$R_p \; [\mathrm{R}_{igoplus}]$	1.37 ± 0.08	1.55 ± 0.09	2.83 ± 0.15	2.64 ± 0.14	2.98 ± 0.17	7.65 ± 0.38	10.69 ± 0.53
S/S_{\odot}	292.51 ± 23.27	217.55 ± 17.23	17.18 ± 1.58	9.61 ± 0.82	6.31 ± 0.52	3.17 ± 0.26	1.74 ± 0.15

Kepler 32 Planetary System

Muirhead, Johnson et al. 2012

KOI-730: Three Pairs of First-Order Resonances

name	period (d)	R _p (R _E)	
730.04	7.3831	1.8	
730.02	9.8499	2.1	
730.01	14.7903	2.8	
730.02	19.7216	2.4	
P/P=1.	33411(8)	4:3	
P/P=1.	50157(5)	3:2	
P/P=1.	33341(3)	4:3	1
3:4:	6:8		t= 270,0 to observer
			-0.2 -0.1 0.0 0.1

Kepler; Lissauer et al. 2011, Fabrycky et al. 2012

Disk Migration into Resonance

Gas giants can have giant eccentricities

Planet with Eccentricity, Being Kicked Still!

-300

1100

1200

1300

1400

time (day)

1500

1600

1700

KOI-1474 (Dawson et al. 2012, 2014)

Doppler confirmation of a TTV planet discovery.

Gas giants can have giant eccentricities...or hug their stars

A Planet Orbiting Two Stars: Kepler-16(AB)b

Doyle, Carter, Fabrycky et al. 2011

Eclipsing Binary Stars

credit: Tim Pyle (NASA)

http://kepler.nasa.gov/multimedia/animations/artistsconcepts/?lmageID=166

Alpha Centauri Bb

Dumusque, Pepe et al. 2012

- \Rightarrow 3.23 days, $M\sin i = 1.13\pm0.09 \text{ M}_{\text{earth}}$
- ⇒ 4 light years away!
- ⇒ In a triple stellar system

Filtered out binary motion, magnetic cycles, starspots; to be confirmed....

The **Economist**

Diversity of Planetary Systems:

Yes, planets are also common *outside* the Solar System... but they are often...

- a) Super-Massive Terrestrials
- b) Mini-Neptunes with packed orbits
- c) Orbits in resonant chains
- d) Hot Jupiters (Close-in)
- e) Eccentric (and/or flipped over)
- f) In binary star systems

Processes forming these systems have worked in the Solar System too, but in subtler ways.

How to get the Data!

http://nexsci.caltech.edu

-- lists of candidates and properties

http://archive.stsci.edu/kepler/

download of lightcurves

A cutting-edge dataset for student research projects!