

Introducing New Challenge Model

- Universities are potentially a significant source of challenge competitors but for most part have not been participating.
- Some Input from Universities
 - Challenges are too difficult
 - No continuity of Challenges; can't build and refine over time like Moon Buggy, Lunabotics, Solar Car, etc.
 - We don't have any funding for challenges

Tailoring Approaches

• Difficulty:

 Better scale initial challenge prize awarding goals to university capabilities – SOA +5%?

Continuity:

- Commit to multi-year challenges with annual competitions aligned with university calendars
- Raise goals annually based on prior year results

Funding:

Provide competitive grants to universities

Adapting "DARPA Model"

- Open competitions with two tracks:
 - Open Track: Unfunded but open to all eligible parties
 - Procurement Track: University Teams Selected for Grants based on response to parallel solicitation
 - Current plan is to support 5-10 teams @\$100-200K each
 - Funded teams would still have to register and meet all Challenge requirements to qualify to win the Challenge prize.

Status

- Conceptual Approval from NASA OGC & Procurement
- Looking for candidate concepts
- late FY14 start

What's Your Challenge Idea?

- Appeals to many universities
- Achievable near term and ultimate goals
- Public/Media would find it interesting

Send short description to –
<hq-stmd-centennialchallenges@mail.nasa.gov>
Use University Challenges in Subject Line

Some Ideas

Europa Ice Challenge

 Demonstrate innovative, scalable solutions to penetrate very thick, low temperature ice that is likely to be found on Europa.

Space Race

 Ground based robotics competition demonstrating autonomous detection, rendezvous, and capture of orbiting sample cache.

Some Ideas II

Aerial Robotic Explorers

Demonstrate a miniature (flying insect class)
sensor package able to sense and transmit data
and fly for more than 10 minutes at Mars surface
conditions.

Micro Lander Challenge

 Demonstrate miniature (<25 kg) vertical takeoff, vertical landing rocket vehicles that can make unfueled round trip between two landing pads.

Some Ideas III

- Earth Entry Vehicle Landing Shock Attenuation
 - Demonstrate new ways to attenuate impact deceleration forces on sample return impactors.
- Precision Lander Challenge
 - Without using GPS, autonomously land a payload within a prescribed target area when dropped from altitude of >20,000 feet.

Some Ideas IV

Mars Ascent Vehicle Challenge

 demonstration of an end-to-end autonomous operation to sequentially accomplish the following tasks: picking up the sample cache, inserting the cache into a single stage rocket in a horizontal position, erecting the rocket, launching the rocket to an altitude not less than 800m, deploying a sample container with the cache internally sealed and landing the container at less than 6m/s terminal velocity.

Ideas V

Venus Thermal Challenge

 Thermal control subsystem development for a notional probe exposed to Venus surface atmospheric conditions. Competitors demonstrate a thermal control system to maintain the probe electronics within a predefined range of pressures and temperatures for a set period of time.

What's Your Challenge Idea?

Send short description to –
<hq-stmd-centennialchallenges@mail.nasa.gov>
Use University Challenges in Subject Line