Active Flight Load Alleviation Using Segmented Trailing Edge Wings on a Small UAS

By
Benjamin Martins

California Space Grant Consortium
NASA Dryden Flight Research Center, Aeronautics Academy 2013
University of California, San Diego, La Jolla, CA 92039

Presented at:
National Council of Space Grant Directors' Spring Meeting, Arlington, VA
February 28th, 2014
Overview

• Introduction
 – Aeronautics Academy Team
 – Objectives
 – Technologies

• System Description
 – Aircraft
 – Fiber Optic Sensor System
 – Segmented Control Surfaces

• Testing
 – Analytical Modeling
 – Flight Test Preparations
 – Flight Tests

• Results
Overview

• **Introduction**
 – Aeronautics Academy Team
 – Objectives
 – Technologies

• **System Description**
 – Aircraft
 – Fiber Optic Sensor System
 – Segmented Control Surfaces

• **Testing**
 – Analytical Modeling
 – Flight Test Preparations
 – Flight Tests

• **Results**

- [California Space Grant Consortium]
Team Members

• Benjamin Martins
 – University of California, San Diego
 California Space Grant Consortium

• Nathan Suppanade
 – California State University, Los Angeles
 California Space Grant Consortium

• Corbin Graham
 – The University of Oklahoma
 Oklahoma Space Grant Consortium
Introduction
Introduction

current wing design

potential concept by 2015
Introduction

current wing design

potential concept by 2015

potential concept by 2020
Introduction
Introduction
Project Objectives

• Build small UAS platform to allow for experimentation in active control of segmented control surface (SCS) wings
• Utilize compact fiber optic strain sensing (cFOSS) system to measure in-flight structural response
• Develop models to predict aerodynamic loading and structural response
• Control in-flight wing deformations using real-time cFOSS data
Segmented Control Surfaces

- Current wing control surface configurations often produce unnecessary structural and aerodynamic loads.
Segmented Control Surfaces

- Current wing control surface configurations often produce unnecessary structural and aerodynamic loads
Segmented Control Surfaces

• Current wing control surface configurations often produce unnecessary structural and aerodynamic loads
• SCS allow for higher resolution of aircraft control input
• SCS can be optimized over the flight envelope
• Key step to implementation of conformal control surfaces/flexible wing concepts
Segmented Control Surfaces

- Current wing control surface configurations often produce unnecessary structural and aerodynamic loads
- SCS allow for higher resolution of aircraft control input
- SCS can be optimized over the flight envelope
- Key step to implementation of conformal control surfaces/flexible wing concepts
cFOSS System

- cFOSS system utilizes glass optical fibers as strain sensors
- Fiber Bragg gratings (FBG) distributed along fiber
- Laser interrogates fibers with incident light
- Straining fiber modifies FBG spacing and hence reflected wavelength
- Capable of ~4000 strain measurements at ~50Hz
Overview

• Introduction
 – Aeronautics Academy Team
 – Objectives
 – Technologies

• System Description
 – Aircraft
 – Fiber Optic Sensor System
 – Segmented Control Surfaces

• Testing
 – Analytical Modeling
 – Flight Test Preparations
 – Flight Tests

• Results
Aircraft (APV-3)

- Span: 12.33 ft
- Dihedral: 2.5 ° along hinge line
- Structure: Monocoque composite
- Original control surfaces: Flap and aileron on each wing, split elevator, rudder
- Weight (without cFOSS system): ~35lbs
- Weight (with cFOSS system): ~45lbs
- Max gross takeoff weight: 55lbs
- Fully autonomous capabilities (Piccolo II)
Fiber Optic Strain Sensors

- Continuous grated fiber with strain data measured every 0.5”
- 86ft of fiber provides over 2000 real-time strain measurements
- Fiber rosettes allow for shape, displacement, twist and principle strain calculations
Segmented Control Surfaces

- Wings modified to include 22 independent control surface segments/servos per wing
- Servo uniformly spaced to produce 3” SCS from existing control surfaces
Complete System
Overview

• Introduction
 – Aeronautics Academy Team
 – Objectives
 – Technologies
• System Description
 – Aircraft
 – Fiber Optic Sensor System
 – Segmented Control Surfaces
• Testing
 – Analytical Modeling
 – Flight Test Preparations
 – Flight Tests
• Results
Aerodynamic Analysis

- Utilized Athena Vortex Lattice (AVL) and XFLR5 programs
- Analytical model prepared for predicting aerodynamic loading of conventional and SCS configurations
- Aides in optimization of SCS configuration at various flight conditions
Structural Analysis

- Developed 32,000 element single wing model in FEMAP
- Wing loaded along quarter chord with load distributions predicted by AVL (40 nodes along span)
- Model solved with NX Nastran yielding strain and displacement predictions
- Used to study effects of SCS configuration on displacement and strain
Pre-Flight Requirements

- 4g static loading distribution on right wing

![4g Static Loading on Right Wing](image)

- 4g Static Loading on Right Wing
 - Root
 - Tip
 - Upper LE Axial
 - Upper TE Axial
 - Lower LE Axial
 - Lower TE Axial

![Out-of-Plane Displacement](image)
Complete Systems Test
Complete Systems Test Video
Test Flights

- Test flights conducted at Dryden Flight Research Center small UAS work area
- Same Flight Patterns flown with (mimicked) conventional and segmented control surface configurations
- Circuits Flown
 - Steady Level Flight
 - Pitch Doublets
 - Roll Doublets
 - High g Steady Turn
Overview

• Introduction
 – Aeronautics Academy Team
 – Objectives
 – Technologies

• System Description
 – Aircraft
 – Fiber Optic Sensor System
 – Segmented Control Surfaces

• Testing
 – Analytical Modeling
 – Flight Test Preparations
 – Flight Tests

• Results
Flight Results-Time History

Filtered Acceleration vs. Time

Filtered Wing Tip Deflection vs. Time
Flight Results-Time History

Filtered Acceleration and Wing Tip Deflection vs. Time

Normalized Wing Tip Deflection vs. Time

Control System On

Control System Off
Flight Results-Time History

- Pitch doublet (~30 sec) strain data for 3 sensors (25, 345, 355)
Flight Results - Conventional

Micro Strain

Displacement

Deflection Conventional

Top Strain Conventional

Bott Strain Conventional
Flight Results-SCS
Future Objectives

- Design and build high aspect ratio wings with SCS and FBG fibers to allow for wider range of wing displacements and SCS control

- Design advanced control architecture for controlling/monitoring of dynamic events
 - Gust Alleviation
 - Flutter Suppression
 - Structural Health Monitoring

- Transition to conformal trailing edge materials
Personal Reflection

- Aeronautics Academy was the experience of a lifetime:
 - Jump started my PhD research
 - Created valuable personal and profession contacts
 - One of a kind practical flight research experience

- California Space Grant Consortium:
 - Gave me research opportunities as an undergraduate with no experience
 - Influenced my decision to go to graduate school
 - Provided support so that I could pursue my research interest both through the Academy and at UCSD
Acknowledgements

I would like to thank my mentors,
- Dr. John Kosmatka, University of California, San Diego
- Dr. Lance Richards, NASA DFRC/AERO Institute

And Teammates,
- Corbin Graham, The University of Oklahoma
- Nathan Suppanade, California State University, Los Angeles

As well as numerous people at NASA Dryden who provided advice, guidance and support, including:
- Robert “Red” Jensen
- Francisco Pena
- Allen Parker
- Dr. Patrick Chan
- Gary Williams
- Dr. Oscar Murillo
- Anthony Piazza
- Michael Marston
Support

Funding for this project was provided by:
- NASA Aeronautics Academy, Dryden Flight Research Center
- California Space Grant Consortium
- Oklahoma Space Grant Consortium
Questions?