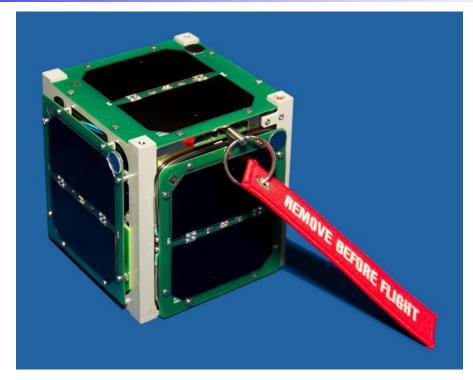
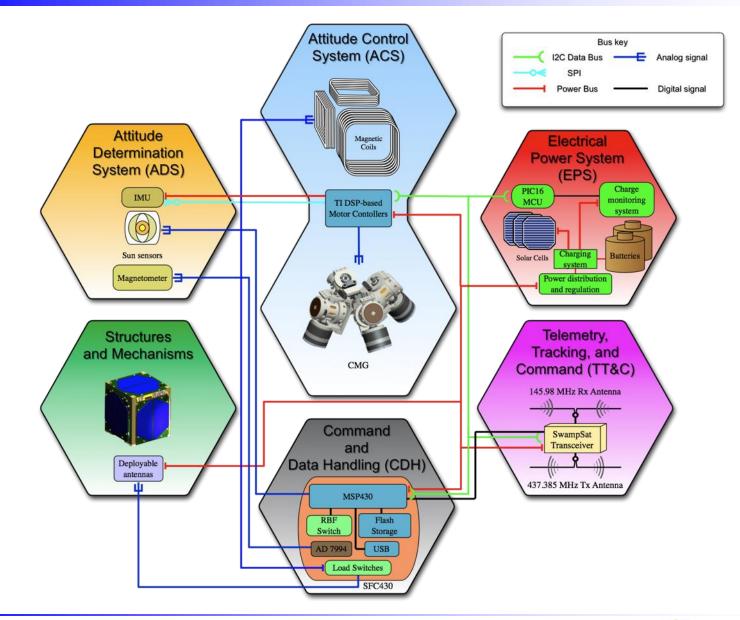


Lessons Learned from Student Built CubeSats:


Shawn Johnson, Kunal Patankar, Bungo Shiotani, Norman Fitz-Coy

University of Florida Dept. of Mechanical & Aerospace Engineering Space Systems Group September 15th, 2012

The SwampSat Mission



- SwampSat is a 1U (10 cm³) CubeSat developed by the Space Systems Group at the University of Florida
- The SwampSat mission is an on-orbit validation of a compact, three-axis actuator, capable of rapid retargeting and precision pointing (R2P2) using control moment gyroscopes (CMG) in a pyramidal configuration
- Successful completion of SwampSat will raise the technology readiness level (TRL) of the CMGs which are known as *IMPACT*

SwampSat Schematic

September 15th, 2012 – Little Rock, Arkansas

SwampSat Assembly

- 1: IMPACT 1.1
- 2: Electrical Power System
- 3: SwampSat Transceiver
- 4: SFC430
- 5: PCB side panels
- 6: Solar cells

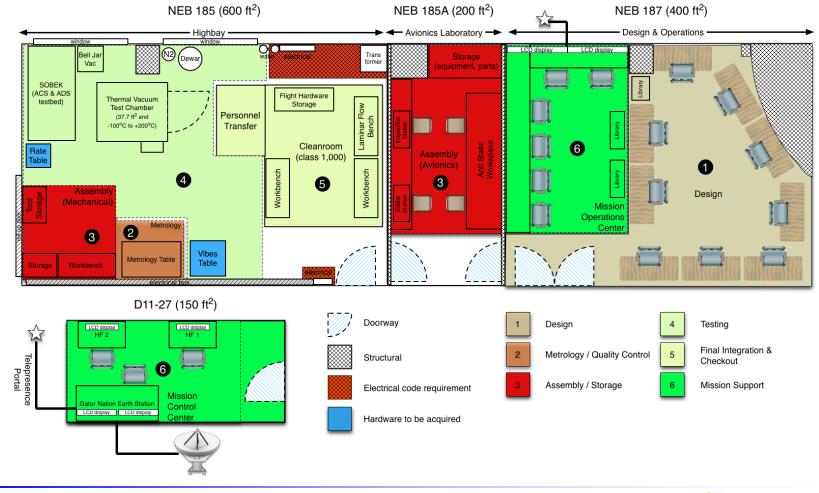
- 7: Sun sensor
- 8: Sun sensor filter
- 9: Motor driver board
- 10: Structure

8

- 11: Receive antenna module
- 12: Transmit antenna module

10

9


6

iDEV Facility

 Integrated Design, Engineering, and Validation (iDEV) facility provides an integrated systematic approach to research, development, and maturation of small satellites

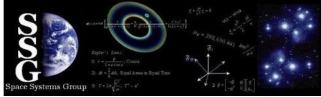
5

Lessons Learned

- SwampSat is the first CubeSat developed by the Space Systems Group
 - Satellite development experience is limited (i.e. few students have worked in industries, however, most students have little or no experience outside academia)
 - Due to lack of previous experience in developing CubeSats, more time was required for the team to develop each subsystem, however, it lead to great increase in team work
- Hands-on experience with flight hardware
 - Most students have never worked with flight hardware, however, the SwampSat project allowed the students to gain valuable experience
 - Flight hardware often requires meticulous care in storage and handling to control contamination levels, temperature, humidity. Unknown changes in these conditions can adversely affect the mission
 - Increased responsibility and leadership promotes an environment that fosters
 professional attitude amongst the students
 - Different fields of expertise
 - Industries will have various fields of engineers with experience, however, the students have a limited experience
 - Most of the members of SSG are in Mechanical and Aerospace Engineering, however, lack of members in Electrical and Computer Engineering pose challenges in the software development

Lessons Learned

- Final design is constrained by external requirements
 - Final requirements and constraints (vibration levels, thermal levels, integration procedure, altitude and inclination, etc.) depend on the launch provider, which may be unknown at onset of project
 - To be more robust, a survey of requirements and constraints from potential launch providers may be used as a worst case scenario to design your final system
- Project management
 - <u>Document EVERYTHING</u>: The time period for academia is short, thus, students come and go. In order to pass along the work to the new members, all work
 MUST be documented. Without documentation, it will be difficult to bring the new members up to speed
 - <u>Verification & Validation</u>: Functionality and characterization tests must be performed pre- and post-testing to validate functionality of each hardware. Test procedures should be developed a priori
 - <u>Schedule:</u> Detailed schedule should be created at the beginning of the project
 - <u>Contingency:</u> Failures will occur during development, thus, sufficient contingency must be included in the schedule
 - <u>Project Manager</u>: Project manager should not be a member of the development team manager needs the flexibility to be effective in schedule management


Acknowledgement

• Space Systems Group would like to thank Dr. Jaydeep Mukherjee for presenting these slides at the Southeast Regional Space Grant Meeting

Dr. Norman Fitz-Coy Department of Mechanical and Aerospace Engineering University of Florida, Gainesville, FL 32611 (352) 392-1029 nfc@ufl.edu

Space Systems Group Department of Mechanical and Aerospace Engineering New Engineering Building, Room 187 University of Florida, Gainesville, FL 32611 (352) 846-3020

