

Student Satellite Development: Lessons Learned from M-Cubed & RAX

Michael Heywood

Great Midwestern Regional Space Grant Consortia Meeting, University of Minnesota September 16, 2010

M-Cubed Background

- Objective: Take mid resolution image of Earth, process and downlink
- Develop the first generation S3FL
 CubeSat to take images of the Earth
 - Cultivate S3FL capability to develop, build, and operate a CubeSat system.
 - Develop imaging capabilities at UofM for the Nanosat Pipeline
- Test Multiangle Spectropolarimetric Imager (MSPI) Algorithm implemented on Virtex 5 FPGA.
 - Deliver data to JPL
- Selected for launch!

RAX Background

Objective: Study the microphysics leading to the formation of magnetic field-aligned plasma irregularities (FAI)

Why Study FAI from Space?

- Kilometer-scale FAI form in the ionosphere and cause scintillation of radio signals
- Microphysics behind FAI formation and distribution not understood
- FAI measurements not possible using ground radars at upper latitudes because scatter perpendicularity condition not met
- Receiving backscatter normal to magnetic field *is* possible in a near-polar orbit because of the wealth of approach angles

FAI, magnetic field lines and radar wave vector

9/24/2010 Bistatic Monostatic

What Does it Take to Keep Making Spacecraft?

- Short Answer: concentrated, largegroup effort
 - Need one group that is focusing their free time on satellite development
 - Knowledge transfer is key
- Generally speaking, perseverance will pay off
 - Not neglecting motivation for the task at hand
- Largest challenge at the end of the day is personnel
 - Effective management
 - Tracking individual progress in a large group is intrinsically challenging

Lesson: Starting a Satellite Program can be Slow!

- Fast facts about starting up the RAX team
 - Two months to fill lab with basic necessary equipment
 - Four months to train core team (see later lesson)
- While motivation to start quickly is strong, purchase orders only come in so fast...
- Don't get discouraged!

Lesson: Sticking With a Project Will Pay Off

- "If you build it, they will come." Kiko Dontchev, former M-Cubed Project Manager, SpaceX
- Put in the full effort to make a project space-flight ready
- M-Cubed is a prime example of this
 - Started as students taking a picture
 - Developed into a technology demonstration for NASA
- Showing you have the experience to build something is encouraging to potential funders

Lesson: Find the Right Faculty Advisor

- Better yet find more than one!
 - Professor James Cutler
 - Professor Alec Gallimore
 - Professor Brian Gilchrist
 - Professor Aaron Ridley
 - Professor Darren McKague

Lesson: Find "Cheap" Ways to Train Students

- Ideally all students come in knowing everything about space systems
- Realistically, all students need time
- Strategically separate students onto projects
- At University of Michigan, we have the Student Space Systems Fabrication Lab (S3FL)

Lesson: The Right Partnership Can Make All the Difference

- It's not just about the name brand of an organization
- Different companies have different goals
- Pair your goals with a company that shares them
- Can lead to a bright future
 - Internships
 - Future projects
 - Jobs

University of Michigan has been fortunate

Lesson: Make Sure to Laugh Now and Again

- Space is frustrating
- Find little ways to keep you and your team entertained
- More than just the general late-night loopiness
- Personal health is key to successful mission

Lesson: Don't Burn Bridges with the Important Groups

- Homeland Security
- FCC
- Amateur Radio
- NOAA
- Launch Provider
- One gaffe can change everything
- Build healthy relationships with the groups that you have to interact with to launch
- Designate a single point of contact for one group

Lesson: Make Flight Units

- Having enough components to make more than one spacecraft opens many doors
 - Backup flight satellite
 - Future launch opportunity
 - Troubleshooting
- Building this into your schedule (and budget) may be difficult, but will be worth it
- You never know what you need until you don't have it

Lesson: Have Faith in Your Capabilities

- Don't be scared to try something that sounds intimidating at first
- Deadlines are met one way or the other
- Might find that benefits are greater than expected
- Example: RAX Electrical Power System

Lesson: Don't Overextend Yourself

- Building two satellites at the same time is great!
- Using the same group of people to do so is not...
- Practical example M-Cubed and RAX
- However: can work to your advantage if done cleverly

Other Lessons

- Each task should have an "owner"
- Document, document, document
- Find ways to tie project work into class work
- Experts are experts for a reason, use them!
- Anticipate knowledge gaps
 - Prevent against unexpected gaps
- Do thorough trade study when considering COTS
- You have to be willing to do something a little crazy from time to time
- Remember the larger picture of your work

Summary

- Many factors at play in a successful satellite program
 - Determination
 - Experience
 - Management
 - Interaction with industry
- Biggest challenge is personnel
- Launching spacecraft is possible and getting easier as time goes on. stick with it and....

Acknowledgements

- The M-Cubed Team
- The RAX Team
- S3FL
- Faculty Advisors
- Industry Sponsors
- Space Grant

Thank you!

Michael Heywood: dingostr@umich.edu

17