Extreme Environments Habitat Design An Engineering Senior Design Course Louisiana State University Laura Ikuma

Course Description: Extreme Environments Habitats Design

Design of human habitats for extreme environments

- Lunar, Mars, space, and deep sea
- Lecture materials on NASA's system engineering process and issues of concern in designing living and working quarters in extreme environments.

Team-taught by 3 faculty

- Dr. Harvey: human-computer interaction, worked at NASA
- Dr. Ikuma: biomechanics, work physiology, information processing
- Dr. Knapp: systems engineering, information technology
- 2-semester course meets senior design (capstone) course requirement for all students.
 - Some students take fall semester only as an elective course

Course Objectives

- To apply systems design, human factors, and other engineering skills and tools to address a specific design problem in extreme environment habitat design.
- To use project management skills to
 - Define a problem
 - Plan the necessary work activities
 - Develop a proposal of work to solve or alleviate the problem
- To complete project plans and present them through written and oral reports.
- To improve team building and oral and written communication skills in a real world environment

Multidisciplinary Senior Design Concept

- Systems Engineering (SE): structured and methodical approach to the development of large, complex systems.
 - Course uses SE as the framework for developing multidisciplinary engineering design projects

Students are from several engineering disciplines

- Industrial engineering (16)
- Biological engineering (3)
- Mechanical engineering (1)
- Construction management (1)

Projects

- Are student-driven
- Incorporate human factors, systems engineering concepts, and other engineering fields (e.g. biological engineering)

Linking multiple engineering disciplines through systems design

Upgrades/Changes Reenter SE Engine at Stakeholder Expectations Definition

- Pre-Phase A: Concept Studies
- Phase A: Concept Development.
- Phase B: Preliminary Design.
- Phase C: Design & Fabricate.

- Phase D: System Assembly, Integration, Test, and Launch (SAITL)
- Phase E: Operations
- Phase F: Closeout

Main topics (course coverage)

Space operations overview

 History of space programs, current and future programs

Systems engineering design

- Design process
- Major subsystem types

Habitat requirements

- Crew (& Payload)
 Accommodations
- Supporting Human Habitat
- Environmental Control & Life Support Systems (ECLSS)
- Closed vs. Open Loop and Regenerative vs. non-Regenerative Technologies
- Extravehicular Activity

Habitat design (Human factors considerations)

- Biomechanics, Work-related injuries and illnesses, Anthropometry
- Environment: thermal, radiation
- Cardiovascular demands
- Safety
- Information Processing,
 Situation Awareness
- Augmented Reality, Assistive Technology

Engineering Design Process (EDP)

 The iterative process of designing a subsystem, component or process to meet desired deeds.

Design Phases:

- Phase 1. Project Definition and Planning Phase
- Phase 2. Requirements Definition and Engineering Specifications
- Phase 3. Concept Generation and Evaluation Phase (also known as the Conceptual Design Phase)
- Phase 4. Product Design Phase

Project Requirements Report

Objective and background

Quantitative design constraints

- Money, mass, energy, and volume budgets
- Environment and associated conditions (temperature ranges, gravity, atmosphere, light, radiation, etc.)
- Length of mission
- # crew members and activities

Weighted user requirements

- Functional and performance requirements
- Interfaces
- Environmental
- Safety and reliability
- Design evaluation plan
- Team organization and project plan

Concept Generation and Evaluation Plan

- Provides complete design specifications
- Provides statement of work for prototype generation and testing
 - This work will be carried out in the spring semester
- Presented to class, instructors, and NASA contacts via video conference

Radiation Reduction

Objective: To reduce human exposure to cosmic and solar radiation in a lunar base to an acceptable level for a six-month

period.

http://www.nsbri.org/HumanPhysSpace/introduction/introenvironment-radiation.html

Sleep Environment

Objective: This project will focus on the design of an efficient and effective sleeping environment that will allow astronauts to obtain a sufficient and quality amount of sleep while residing on the moon and in space.

Modular Habitat Design

Objective: To find the shape, materials, and shipment and assembly processes which maximize compatibility and flexibility in a modular Martian habitat while staying within Design Reference Mission specifications

http://www.jpl.nasa.gov/news/news.cfm?release=2008-214

The Lunar Dust Dilemma

Objective: The main goal of this design project is to minimize the amount of lunar dust that is tracked into the habitation module on the moon.

Currently, an estimated 227g/suit of dust reenters the module after an EVA, approximately 7% of which becomes airborne. Our objective is to decrease the amount of airborne dust to 2%.

Bioregenerative Life-Support System (BLSS)

Source: www.nasa.gov

Objective: To design and optimize a hydroponic nutrient delivery system for phototrophic organisms, which sustain oxygen levels required for human life, utilizing available sources present on Mars.

Course Timeline

Fall 2010

Spring 2011

Summer 2011

Fall 2011

- Project Proposals
- Project Requirements
- Concept Generation & Evaluation Plan
- Testing and evaluation
- Outreach to local elementary school
- Course workshop
- Finalize course materials
- Ready for implementation in other schools!

Learn more, come to the workshop (FREE!)

- Workshop on this senior design course held July 2011
- NASA will cover expenses
- Course content will also be available on NASA website
 - Presentation slides
 - Course materials

