National Space Grant Student Satellite Program

NSGSSP: Addressing US Space Program Priorities

17 September 2010

Mike Drake, Arizona SG
Chris Koehler, Colorado SG
Alec Gallimore, Michigan SG
Luke Flynn, Hawaii SG
Outline of Talk

- Status of US Space and Satellite Program
- Increasing Interest in Small Satellites
- New NASA Mission Directorate – OCT
- Where does NSGSSP fit in?
- Summary and Issues
State of the Spacecraft & Rocket Industry

How is Responsive Space Doing?
State of U.S. Space Industry

U.S. does not drive the satellite market
- > 40 Countries w/ Space Programs

Commercial only statistics are worse

U.S. share of the world satellite market went from 68% in 1998 to 29% in 2008 while overall satellite demand remained steady.
State of U.S. Space Industry

- U.S. does not command launch market
 - > 7 Countries / consortiums w/ launch systems

Launches by Country/Consortium Builder

- Few commercial satellites are launched using U.S. rockets

U.S. share of launches went from 40% in 1998 to 23% in 2008 while total launch numbers remained steady.
Launch Opportunities

+ Reduced costs will increase launch opportunities
 • Current cost range for U.S. launch to LEO: $4.5K – $11K per pound

+ Expand market for small launchers
 • Space X, Minotaur, Pegasus, etc

Impact of Decreasing Launch Prices on Commercial Market Forecast Year 2001 - 2021
Interest in “Rapid, Low-Cost” Space

- Small Sats are Cheaper!!
 - Current satellite and launch cost for “big” satellite = $1B
 - Current small satellite and launch cost ~ $140M
 - Low-cost satellites and launch vehicles needed.

- Space Technology Development Interest
 - National Reconnaissance Office – Investing in 4-5 “generations” of 3-u CubeSats
 - Boeing building ~ 50 satellites (Space News)
 - 9-month development cycles per generation
 - Air Force interest in CubeSats
 - Operationally Responsive Space Office “Chili Works” dedicated to small satellite development.
 - NASA spins up Office of Chief Technologist
 - Interest in TRL advancement for critical technologies
 - Willing to accept experimental missions for iterative technology development.
 - Returning to 60’s mentality when failure was part of the learning process.

- Rapid Response – Simple to assemble, inexpensive LV in terms of parts and “pad maintenance”.
 - Disaster management, on-orbit asset replacement
NASA’s “New Mission Directorate”

- OCT will be the equivalent of a new NASA Mission Directorate
- Office of the Chief Technologist
 - Deputy Director laid out OCT goals at the August NASA EPSCoR meeting in Washington DC
 - OCT is willing to accept Class D missions to promote rapid development of new space technology.
 - “Space technology” means the traditional instrument development but also subsystem and small sat development.
 - NASA Ames will receive significant development responsibilities in small satellites (technology and missions).
 - Focus on providing support for technology to orbit.
 - RFP’s and AO’s prepared and ready for release with FY 11 funding to NASA
National Space Grant Survey

- Survey Results
 - 44 SG’s with small sat programs

- Working Together
 - Common CubeSat components
 - Custom NanoSat components
 - Time zones, schedules
 - Real-time networking and communications
 - Educational Focus – Grad, undergrad?
 - Build Schedule – 1 year, 2 years??

- Working with NASA Center(s)
 - NASA’s Posture
 - Risk averse
 - Paper intensive
 - SAA Legal Challenges
Pipeline: UH Forays to “Near Space”

- UH/CoE CubeSat Team
 - Builds small sats of various sizes based on 10cm³ box.
 - Larger CubeSats have increased capability
 - Relatively low component cost makes them useful for university projects.
 - Failed launch on Russian Dnepr rocket - July 26, 2006.

- Community Colleges and UHM Build CanSats
 - Windward CC, Honolulu CC, Kapiolani CC, and UH-Manoa have all participated in CanSat competitions
 - “Soda can” satellite launched to 10K ft. and recovered.
 - Kapiolani CC placed 5th in 2009 competition.
 - Kauai CC launched a CanSat from Kauai in August.

- Windward CC Rocketry Program
 - Students build and launch rockets in national competitions.
 - Help to sponsor Kauai CC rocketry program.

- HawaiiSat-1 in progress – 80 kg small sat
Space Grant Role?

- **Kit development for CubeSats**
 - Next Step: Shared development of 6-u and 12-u CubeSat kits for rapid instrumentation and/or mission development.
 - Collaborative COTS subsystem development
 - Favorable IP restrictions – Government (Space Grant ?) ownership of IP that would allow use by any affiliated Space Grant educational institution.

- **Shared Support Elements**
 - Ground station coordination following North Dakota shared observatory model.
 - Concurrent engineering design, I&T facilities
 - Example: U Texas Systems Engineering
Comprehensive Open-architecture Space Mission Operations System (COSMOS)

Features of COSMOS:
• Set of software and hardware tools to support spacecraft mission operations
 ▪ Mission Planning & Scheduling Tool (MPST)
 ▪ Mission Operations Support Tool (MOST)
 ▪ Ground Network Control Tool
 ▪ Data Management Tool
 ▪ Analysis Tools
 ▪ Test Bed Control Tool
• Open architecture to enable modifications and adaption to new missions and MOCs
• User-friendly interfaces and short learning curves for users and software integrators
• COSMOS editor
• Uses Limited Qt – helps ITAR
• Sockets for COTS/GOTS

COMOS is especially designed to be easily adaptable to operate multiple small satellites and to be easily transferable to new MOCs. COSMOS is being developed as a collaboration between HSFL, NASA Ames Research Center, and Santa Clara University. Participation by other universities is welcome.
Rideshare Payload Configurations

- Large fairing capacity for multiple small sats
- NASA Ames Payload Adapter and Deployer (PAD)
 - PAD can carry 24 1-u Cubesats or a combination of 1-u, 3-u, 6-u, and 12-u Cubesats
Small Sat Performance & Costs

<table>
<thead>
<tr>
<th>Spacecraft Size</th>
<th>Mass (kg)</th>
<th>S/C Volume (cm³)</th>
<th>Power (W)</th>
<th>Bus Cost ($K)</th>
<th>Launch Cost ($K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-u</td>
<td>1-2</td>
<td>10 x 10 x 10</td>
<td>2</td>
<td>20-30</td>
<td>40-60</td>
</tr>
<tr>
<td>3-u</td>
<td>5-6</td>
<td>10 x 10 x 30</td>
<td>4-5</td>
<td>100-200</td>
<td>250-300</td>
</tr>
<tr>
<td>6-u*</td>
<td>12-15</td>
<td>10 x 20 x 30</td>
<td>12-15</td>
<td>400-500</td>
<td>750</td>
</tr>
<tr>
<td>12-u*</td>
<td>30-40</td>
<td>20 x 20 x 30</td>
<td>40</td>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>HawaiiSat-1</td>
<td>60-80</td>
<td>60 x 60 x 70</td>
<td>100</td>
<td>2000</td>
<td>4500</td>
</tr>
<tr>
<td>Other</td>
<td>>80</td>
<td>larger</td>
<td>??</td>
<td>??</td>
<td>Up to 12000</td>
</tr>
</tbody>
</table>

* Have not flown in orbit
Space Grant and OCT can play pivotal *leadership* role in small spacecraft development and technology maturation projects.

- Make 3-u, 6-u or 12-u CubeSat kits for new technology and mission developments.

Facilities and Workforce Training Support
- Developing the new workforce for Class D missions
- UHF/VHF and S-band network of ground stations for tech demo missions.
- Other shared facilities – Engineering design centers, I&T facilities, etc.

Hurdles – Posed to OCT.
- Who owns IP?
 - The answer should be “All of us!” Ideally, all 52 consortia would have full access to CubeSat kits!
- Communication and coincident engineering activities. MIMIC model?
- How to cut NASA reporting requirements for Class D developments