

ELECTRONIC PROCEDURE VIEWER DESIGN FOR NEXT-GENERATION SPACECRAFT

Andrea Gilkey

PI: Rob McCann, Ph.D.

- Background
- □ Goals
- Methods
- Results
- Conclusions

Fault Management Operations on Shuttle

- Quick recovery is vital
- Caution & Warning (C&W)system designed in 1970's
- Highly interconnected systems
- Recovery procedures = paper checklists
- Crew members must timeshare faults with critical tasks

Fault Management Operations on Next-Generation Vehicles

ISIS
intelligent spacecraft interface systems

- Electronic interfaces
 - Electronic procedure viewer (EPV) will replace paper checklists
 - Mode reconfigurations via electronic switches
 - Limited display real-estate

McCandless, Hilty, & McCann, 2005

- Unavoidable increases:
 - Software development
 - Testing
 - Verification requirements
 - Onboard computing resources
 - Computer memory
- Additional software cost vs. improved fault management performance

ISIS Study Goals

- Understand operators' display usage during the fault management process
- Evaluate human performance in the multitasking environment of dynamic flight
- Understand effect of automation on fault management operations

Operations Concepts for Time Critical Fault Management

ISIS
intelligent spacecraft interface systems

Elsie

- Less computationally demanding
- Retains fault management difficulties encountered on shuttle

Besi

- More advanced
- Automated root cause diagnosis
- Failure message linked to checklist

ISIS
intelligent spacecraft interface systems

- Developed
 - Electrical power system (EPS)
 - Environmental control and life support system (ECLSS)

Electrical power system (EPS)

Environmental control and life support system (ECLSS)

Elsie

ISIS intelligent spacecraft interface systems

Elsie Diagnosis Phase

Elsie

ISIS intelligent spacecraft interface systems

Elsie Recovery Phase

Elsie

ISIS intelligent space

intelligent spacecraft interface systems

Besi

ISIS

intelligent spacecraft interface systems

ELSIE

- Manually:
 - Determine root cause
 - Find recovery checklist
 - Bring up line diagram, switch panel, EPS loads, fault sum, fault log

BESI

- Automatically:
 - Determine root cause
 - Find recovery checklist
 - Link checklist step to line diagram switch

Orion CEV Simulator

Nostromo Hand Controller

- Measured operator performance during simulated
 Orion ascents
- One or two independent malfunctions per ascent
- Diagnose malfunction, select and complete checklist of fault isolation and recovery procedures

ISIS intelligent spacecraft interface systems

- 8 operators, all instrument-rated pilots
- □ 12 hours of training
- Pass a final exam before datacollection
- 14 malfunctionscenarios

Scenario #	Malfunction(s)
1	A/L1 sw mismatch
2	B/L1 sw mismatch (false alarm)
3*	Load B sw mismatch (restorable) A/L2 sw mismatch (false alarm)
4*	Load A sw mismatch (restorable) B/L2 sw mismatch
-5	DistAA sw mismatch (restorable)
6	DistBB sw mismatch (restorable)
7	Battery A volts low
8	Battery B volts low
9	Inverter A failure
10	Inverter B failure
11*	Inverter A failure Battery A volts low
12*	Same as 11
13*	Battery A volts low Battery B volts low
14*	Battery B volts low Battery A volts low

Multiple-malfunction scenarios

- Detect changes in display color of PFD flight parameters
- Touch PFD parameter
 and verbally
 annunciate
 parameter's name

Primary Flight Display (PFD)

ISIS
intelligent spacecraft interface systems

□ Video

Save critical DU screen space

MATERIAL OF STREET

court is then tend by in 10. If

DOI NOT

Electronics Procedure Viewer

- Limited display real estate
- Objective
 - Determine if participants sample information above or below the current focus line
 - If the operator does not examine checklist steps before or after the current focus line, then the EPV can be shortened to only one line
 - Determine if there is a difference in information sampling behavior between Elsie and Besi

Electronics procedure viewer (EPV)

Experimental Analysis

- Does the operator examine checklist steps other than the current focus line?
 - What percentage of looks in EPV on focus line?
 - Of those not on focus line, how many looks are on each of the following steps?

Electronics procedure viewer (EPV)

Results

Results

Analysis of Long vs. Short Checklists


```
is to her to blood on bright ....
  DESCRIPTION OF
A. Dhatte or ..... male life.
DESCRIPTION OF
board of their sold by as 23. The
      Devi Guides sub-
   S. M. Bar A Lin. All on
```


Results

Results

- □ Recommendation: Provide the entire checklist
- May not be as much need to provide entire checklist when more automated assistance is provided with the fault management task

ISIS
intelligent spacecraft interface systems

Thank You!

- ISIS Lab: Robert McCann, Martine Godfroy, Ujwala Ravinder, Steve Elkins
- NASA Ames Academy: Brad Bailey,
 Kristina Gibbs, Doug O'Handley
- Nebraska Space Grant

References

- Hayashi, M., McCann, R. S., Beutter, B. R., Spirkovska, L., Poll, S., Sweet, A., et al. (2007). Human Factors Evaluation of Caution and Warning Interface Concepts for Project Constellation Vehicles. SHFE NASA Report.
- Hayashi, M., Ravinder, U., McCann, R.S., Beutter, B., & Spirkovska, L. (2009). Evaluating Fault Management Operations Concepts for Next-Generation Spacecraft: What Eye Movements Tell Us. NASA Space Human Factors Engineering Project Technical Report.
- McCann, R., Beutter, B. R., Matessa, M., McCandless, J. W., Spirkovska, L., Liston, D., Hayashi, M., Ravinder, U., Elkins, S., Renema, F., Lawrence, R., & Hamilton, A. (2006). Description and evaluation of a real-time fault management concept for next-generation space vehicles. SHFE NASA report.
- McCandless, J., Hilty, B., & McCann, R. S. (2005). New displays for the space shuttle cockpit. Ergonomics in Design, 13, 15-20.

Questions?