Student Ballooning and the High Altitude Student Platform

T.G. Guzik and J. P. Wefel
Louisiana Space Consortium,
Louisiana State University, Baton Rouge, LA U.S.A.
HASP focuses on university students

- Operates as a partnership between the NASA Balloon Program Office (BPO) and Louisiana Space Consortium (LaSPACE)
 - BPO provides balloon, launch and flight services
 - LaSPACE maintains HASP & supports the student payloads
- Provide students with an annual near-space flight opportunity
- Support payloads that perform technology testing or scientific measurement
- Opportunity to test fly prototype student satellite components
- Provide students with real-world science / engineering project development experiences
- Keep students excited about a science, technology or engineering career
Major HASP Features

- Support 12 student built payloads
 - Eight small payloads < 3 kg
 - Four large payloads < 20 kg
- Fly to an altitude > 36 km for a duration of ~20 hours
- Standard interface for each payload
 - Mechanical plate interface
 - Serial downlink telemetry < 4800 bps
 - Serial uplink commands
 - Discrete commanding
 - 32 VDC power @ < 2.5 Amps
 - Analog (0 to 5 VDC) downlink
 - Downlink available in near real time
- Include CosmoCam for real time video during launch & flight
Typical Payload Development Schedule

- Application process takes place in the fall
 - Release of CFP (Call for Payloads): October 1
 - Applications due: December 18
 - Selection announcement: mid-January

- Payload development takes place in the spring
 - Require monthly status reports and telecon meetings
 - Preliminary thermal / vacuum test the 3rd week of May

- Integration occurs during 1st week of August
 - Use the Columbia Scientific Balloon Facility (CSBF) in Palestine, Texas
 - Must pass a thermal / vacuum test to be flight certified

- Flight Ops take place around Labor Day
 - Use the CSBF balloon launch facility in Ft. Sumner, New Mexico
Typical HASP Flight

- **HASP** is a medium weight payload
 - Total suspended weight is 2,000 pounds
 - Use a 11 million ft³ zero pressure balloon

- Usually launch just after dawn
 - Require ground, low level and high altitude winds to cooperate

- Flight lasts about 17 hours
 - Takes about 2 hours to get to ~36 km (~120,000 feet)
 - Take about 45 minutes to come down on parachute
 - Get a day and some night in “space”

- HASP has now flown four times
 - Total time at float is more than 75 hours
 - Expect to continue flights each year
HASP 2006 & 2007 Flights

2006 Flight Profile:
- Launch: 9/4/06 15:51 UTC
- Float Start: 9/4/06 18:17 UTC
- Terminate: 9/5/06 09:18 UTC
- Time at Float: 15.0 hours

2007 Flight Profile:
- Launch: 9/2/07 13:12 UTC
- Float Start: 9/2/07 15:20 UTC
- Terminate: 9/3/07 07:52 UTC
- Time at Float: 16.5 hours
HASP 2008 & 2009 Flights

HASP 2008 Flight Profile
Launch: 9/15/2008 13:33:44 UTC
Float: 9/15/2008 15:36:38 UTC
Terminate: 9/16/2008 23:23:33 UTC
Average Float Altitude: 36,600 meters
Float Duration: ~31.8 hours

HASP 2009 Flight Profile
Launch: 9/11/2009 14:48 UTC
Float: 9/11/2009 16:48 UTC
Terminate: 9/12/2009 04:46 UTC
Impact: 9/12/2009 05:35 UTC
Ave. Float Altitude: 36,240 meters
Float Duration: ~12 hours
HASP has involved many students from across the country

- 44 student payloads have been accepted for flight since 2006
 - 8 flown on HASP 2006
 - 11 selected (10 flown) for HASP 2007
 - 13 selected (10 flown) for HASP 2008
 - 12 selected (6 flown) for HASP 2009
- Greater than 70% success during 2006, 2007 & 2008
- A total of 191 students have been involved with HASP
- Participants from 17 institutions across 11 states
- Payloads cover a broad range of subjects
Examples of flown payloads

- **Louisiana State University – Baton Rouge (2006, 2007):** Study the flow characteristics of various rocket nozzles as a function of altitude
- **West Virginia University (2007):** High altitude cosmic ray detector
- **University of Alabama – Huntsville (2006, 2007, 2008):** Infrared imaging of the balloon thermal characteristics
- **University of Colorado (2008, 2009):** Assessment of astronomical observations from balloons
- **University of Maryland (2008, 2009):** Flight test of compact radio telemetry system
Montana Particle Capture Experiment

- Experiment to capture cosmic particles and analyze their morphology and composition in the laboratory
 - Trap particles on optically clear plates coated with silicone oil
 - Flew in 2007 (success), 2008 (not so good) and 2009 (looks good so far)

- Light scattering particle detector to examine vertical distribution of >1μm size dust particles
 - Test homogeneity of stratosphere during particle capture
 - New for 2009

Images courtesy MSU team

Opening of MSU experiment (8 times normal speed)
Particle Capture Preliminary Results

Laser Particle Counters

- Both particle counters gave similar readings – ground – 36,000 feet.
- Uncertain as to why the measurements diverged after that.

Cosmic Dust Capture Box

- Analysis of 2007 data has examined 400 particles so far
- HASP 2009 capture plates exposed for 12-hours and the optical analysis of the plates has started

LSU 10/19/09
NSG Directors Meeting - Oct 23, 09
Found Different Types of Particles

Rocket Exhaust

Volcanic Dust?

Cosmic Dust?

Lab Contaminant

LSU 10/19/09

NSG Directors Meeting - Oct 23, 09
North Dakota / North Florida
Prototype ITO Ozone sensors

• Collaboration between two universities in two states
 – University of North Florida (sensor development)
 – University of North Dakota (payload development)
• Flight test of prototype solid state gas-sensitive resistor sensor
 – CMOS indium tin oxide (ITO) sensor
 – Material doped in order to be sensitive to different gases
• Payload has successfully flown twice
 – Array of 24 Ozone sensors of three different types in 2008
 – Array of Ozone and NO\textsubscript{X} sensors in 2009

Images courtesy UND/UNF teams

LSU 10/19/09
NSG Directors Meeting - Oct 23, 09
ITO Sensors Flight Results

- The electrical resistance of ITO increases in the presence of oxidizing gases
 - Vacancy site is filled by a charge accepting molecule
 - Electrons are depleted from conduction band, leading to an increase in resistance
- Sensors were calibrated with known O₃ concentrations
- HASP 2008 flight results yield a measured ozone profile very similar to what was expected.
- Project has already resulted in one publication and one Master’s Degree thesis.
Balloon Observatory for Wavelength and Spectral Emission Readings (BOWSER)

- University of Colorado (Boulder) team experiment is designed to test the feasibility of balloon-borne observatories
 - Use an array of LED sensors to measure sky brightness in the visible, ultraviolet and infrared
 - Use wide and narrow field cameras to image star fields and celestial objects
 - Include a magnetometer compass, accelerometers and gyroscopes to determine the platform attitude and stability during the flight
- Flown in 2008 (DIEHARD) and 2009 (BOWSER)

Images courtesy UC team
BOWSER Imaging of Venus

Images courtesy UC team

Exposure time: 1/13 second

Simulated Image

Zoomed in from top picture

Computer generated image of Venus at 3 pm on launch day by Stellarium.

LSU 10/19/09

NSG Directors Meeting - Oct 23, 09
BOWSER Imaging of Big Dipper Stars

Inverted image of Big Dipper handle from G9 camera

Alkaid

Mizar

Alioth

Exposure time: 1 second

Camera Field of View

Time: 20:06
Latitude: 33.9114 degrees N
Longitude: 111.5310 degrees W
Altitude: 34089 m

Compass reading: 311 degrees (NW)
Sun’s azimuth: 279 degrees
Call for Payloads 2010

CFP document and application materials is available on the “Participant Info” tab of the HASP website

http://laspace.lsu.edu/hasp/Participantinfo.html

Q&A Teleconference November 13, 2009 at 10 am (central time)
Dial 1-866-717-2684, ID 6879021

Completed applications are due on December 18, 2009
Submission Instructions

• E-mail PDF version of application by 11:59 pm (central time) to guzik@phunds.phys.lsu.edu

• Mail hardcopy of application to
 T. Gregory Guzik
 202 Nicholson Hall / Tower Drive
 Department of Physics & Astronomy
 Louisiana State University
 Baton Rouge, LA 70803-4001

• Applications will be reviewed by HASP Management at LSU and the NASA Balloon Program Office
 - Applications will be reviewed for completeness, consistency, scientific or technical justification, and ability to fit within the HASP constraints
 - Priority will be given to payloads that are clearly designed, built, managed and operated by students

• Decisions will be announced by January 15, 2010