National Space Grant College and Fellowship Program

2009 Fall National Meeting

Portland, Oregon

Diane DeTroye
Katie Pruzan
Space Grant and EPSCoR Programs
• National STEM Priorities
• NASA Education Priorities
• 20th Year Evaluation
• 2010 Budget Solicitation
The nation that out-educates us today will out-compete us tomorrow.

- President Barack Obama
 Speech to the National Academy of Science
 April 27, 2009
Educate the next generation with 21st century knowledge and skills while creating a world-class workforce. (Executive Office of the President, Strategies for American Innovation, September 2009)
“It is the sense of Congress that NASA's educational programs are important sources of inspiration and hands-on learning for the next generation of engineers and scientists and should be supported.”

- Competitive Grants (Global Climate Change Education, K-12, Public Engagement through museums, science centers, planetaria)
- Evaluation to justify the use of Federal funds
- Collaboration of Federal agencies (avoiding duplication of effort, sharing best practices)
“If we choose to lead, we must
• build on our investment in the International Space Station,
• accelerate development of our next generation launch systems to enable expansion of human exploration,
• enhance NASA's capability to study Earth's environment, lead space science to new achievements,
• continue cutting-edge aeronautics research,
• support the innovation of American entrepreneurs, and
• inspire a rising generation of boys and girls to seek careers in science, technology, engineering and math.”
Our challenge from the President is to emphasize STEM education and reinvigorate inspiration.

Bolden to Winterton

- Inspire students and help them believe in themselves
- Professional development for educators
- Performance metrics to justify investments
- Diversity including females and geographic reach

[We will look for opportunities to engage Bolden at the state level in the normal course of his travels.]
NASA Education Overview

Education Pipeline

Informal STEM Education
- Science Centers and Museums
- NASA Visitor Centers
- Community Based Organizations

NASA STRATEGIES: Partnerships and networks

K-12 STEM Education
- STEM Student Opportunities
- STEM Teacher Development

NASA STRATEGIES: Educator Professional Development Education Technology

Higher Ed STEM Education
- STEM Opportunities
- Space Grant EPSCOR MUREP

NASA STRATEGIES: Research and authentic experience, Institutional Dev.

Grad Higher Ed STEM Education
- STEM Opportunities
- Space Grant EPSCOR MUREP

NASA STRATEGIES: Research, Institutional Dev.

Public → K-12 → Undergrads → Graduate Students

Talented, diverse, and highly-skilled science & engineering pipeline

NASA’s Pipeline

- NASA Civil Service
- NASA Contractors
- NASA P.I.’s (Universities)

Career Decisions
Outcomes and Objectives

Outcome 1: Higher Education
- Faculty and Research Support
- Student Support
- Student Involvement Higher Education
- Course Development
- Targeted Institution Research and Academic Infrastructure

Outcome 2: Elementary, Secondary, and e-Education
- Educator Professional Development, Short Duration
- Educator Professional Development, Long Duration
- Curricular Support Resources
- Student Involvement, K-12

Outcome 3: Informal Education
- Educational Support Resources
- Professional Development for Informal Education Providers
- Informal Education Provider Involvement Opportunities
PART Measures

Higher Education

- Number of underrepresented and underserved students participating in NASA education programs.
- Percentage of student participants employed by NASA, aerospace contractors, universities, & other educational institutions.
- Percentage of undergraduate students who move on to advanced education in NASA-related disciplines.
- Ratio of funds leveraged by NASA funding support.
- Number of new or revised courses targeted at the STEM skills needed by NASA that are developed with NASA support.
- Number of institutions served in designated EPSCoR states.
PART Measures

K-12 Education

- Percentage of elementary and secondary educators who either obtain NASA content-based education resources or participate in short-duration NASA education activities and use NASA resources in their classroom instruction.
- Number of elementary and secondary student participants in NASA instructional and enrichment activities.
- Percentage of elementary and secondary educators who participate in NASA training programs who use NASA resources in their classroom instruction.
- Percentage of students expressing interest in science, technology, engineering, and math (STEM) careers following their involvement in NASA elementary and secondary education programs.
- Cost per participant of programs in elementary and secondary programs.
PART Measures

Informal Education

- Percentage of Museums and science centers that participate in NASA networks and that use NASA resources in programs & exhibits.
- Number of museums and science centers across the country that actively engage the public in major NASA events.
- Dollar invested per number of page views for NASA Education website.
Higher Ed STEM Education
• Space Grant 5-year awards
• Community College partnerships
• Student launch opportunities

STEM Teacher Development
• NES Redesign
• Endeavor Teacher Certificate

NASA MISSIONS

NASA Informal Education Opportunities
• Hubble/Kepler
• Earth science education opportunities
• Public access to images

STEM Student Opportunities (K-12)
• STS-131, Dottie Metcalf-Lindenburger
 • Robotics
 • Women in Engineering

• LCROSS/LRO
 • Real-time data for students
 • Engineering design challenge
FY 2010 Highlights and Budget Request

Total requested new budget authority is $126.1 million.

- **$80.6 million** for the Higher Ed STEM Education will include STEM Opportunities, Minority University Research and Education Program (MUREP), Space Grant, and Experimental Program to Stimulate Competitive Research (EPScoR). These projects will build, sustain, and provide a skilled, knowledgeable, diverse, and high performing workforce to meet the current and emerging needs of NASA and the Nation.

- **$43.3 million** for the K-12 STEM Education program to provide:
 1. STEM Student Opportunities to engage and help retain students in STEM disciplines through flight opportunities, hands-on research and engineering experiences, and increased knowledge of NASA science and technology content; and
 2. STEM Teacher Development that uses NASA’s content and resources to provide pre-service and classroom teachers with learning experiences to build STEM skills and better motivate students to pursue STEM careers. (e-Education program incorporated into STEM Teacher Development)

- **$2.1 million** for Informal STEM Education to address requests that come to NASA Centers from scouting groups, community-based organizations, and other informal education providers who use NASA content to engage their audiences in STEM experience; to support the Nation’s museums, science centers and planetariums in developing innovative educational experiences that help the American public understand NASA’s exploration mission.

NASA EDUCATION

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Ed STEM Education: STEM Opportunities</td>
<td>$11.60M</td>
<td>9%</td>
</tr>
<tr>
<td>Higher Ed STEM Education: MUREP</td>
<td>$30.65M</td>
<td>24%</td>
</tr>
<tr>
<td>Higher Ed STEM Education: EPScoR</td>
<td>$9.95M</td>
<td>8%</td>
</tr>
<tr>
<td>Space Grant</td>
<td>$28.43M</td>
<td>23%</td>
</tr>
<tr>
<td>STEM Student Opportunities</td>
<td>$14.50M</td>
<td>11%</td>
</tr>
<tr>
<td>STEM Teacher Development</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>NIEO</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>Informal STEM Education</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>K-12 STEM Education: MUREP</td>
<td>$30.65M</td>
<td>24%</td>
</tr>
<tr>
<td>K-12 STEM Education: EpiscoR</td>
<td>$9.95M</td>
<td>8%</td>
</tr>
<tr>
<td>K-12 STEM Education: Space Grant</td>
<td>$28.43M</td>
<td>23%</td>
</tr>
<tr>
<td>K-12 STEM Education: STEM Student Opportunities</td>
<td>$14.50M</td>
<td>11%</td>
</tr>
<tr>
<td>STEM Teacher Development</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>NIEO</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>Informal STEM Education</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>K-12 STEM Education: MUREP</td>
<td>$30.65M</td>
<td>24%</td>
</tr>
<tr>
<td>K-12 STEM Education: EpiscoR</td>
<td>$9.95M</td>
<td>8%</td>
</tr>
<tr>
<td>K-12 STEM Education: Space Grant</td>
<td>$28.43M</td>
<td>23%</td>
</tr>
<tr>
<td>K-12 STEM Education: STEM Student Opportunities</td>
<td>$14.50M</td>
<td>11%</td>
</tr>
<tr>
<td>STEM Teacher Development</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>NIEO</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
<tr>
<td>Informal STEM Education</td>
<td>$2.12M</td>
<td>2%</td>
</tr>
</tbody>
</table>
NASA Connects to National STEM Challenges

Strategies for Success

• Focus on NASA science, aerospace, exploration missions
• Increasing use of education technologies (*video conferences, web, videos, podcasts*)
• Expert advice on major investment decisions: target audiences, communications, implementation, etc. (*National Research Council study, professional organizations, launch forums, focus groups*)
• Engaging the Nation in exploration (*museums, student launch opportunities, internships and fellowships*)
• Focused effort to ensure diversity of participants
• Innovations in STEM Education
• Operating Effectiveness and Efficiency
 – Performance Management and data-driven decision making
 – Evaluation for impact
 – Competitive acquisitions
 – Partnerships with Federal agencies
 – Sound business and management practices
Strategies for Success

• NASA collaborates & partners with other agencies to jointly focus on management, regulatory, and operational education programming issues impacting federal agencies.

• Inter-agency participants identify, propose, and provide mutual support in implementing solutions to common issues impacting efficiency and effectiveness.

• NASA collaborations & partnerships include…
 – *Federal Interagency Committee on Education* (Chaired by ED)
 – *Academic Competitiveness Council* (collaboration on development of STEM evaluation measures)
 – *National Science and Technology Council* (NSTC) Subcommittee on Education and Workforce Development
 – *NSTC Subcommittee on Innovation and Competitiveness*
 – *Federal Evaluators Informal Association*
 – Working groups related to data collection, privacy issues, PART reporting, other issues
Space Grant – New Solicitation

Highlights

• “Authentic”, hands-on Student Experiences
 • Active participation in science and engineering disciplines
 • Engaged in NASA, NASA-related industry, with NASA P.I.s
• Topical areas of interest
 • Aeronautics research
 • Environmental Science & Global Climate Change
• Geographic Diversity
 • as well as racial, ethnic, and gender diversity
• Community College involvement
• Innovation – new ways of executing your programs
• Programmatic rigor and evaluation -- Goals, SMART Objectives, targets and metrics, formative and summative evaluation
 • Justify your investments
Congratulations to the following consortia who submitted successful proposals to the Steckler/Space Grant solicitation!

- Arizona (two proposals)
- California
- Connecticut
- Florida
- Idaho
- Massachusetts
- Montana
- Nevada

- New York (two proposals)
- New Mexico
- Ohio
- Pennsylvania
- Texas (two proposals)
- Virginia
- Wisconsin
20th Year Evaluation

Program Performance and Results

- The Fellowship/Scholarship component is very strong
- Management was highly rated in high performing consortia
- Workforce development is a hallmark of the program
- Awards to underrepresented minority and female students indicate a strength of the program
- There is room for improvement in terms of meaningful engagement of minority serving institutions
Network Participation and Responsiveness

- Responsiveness to NASA HQ requests are a strength
- Improvement is needed in terms of the quality and timeliness of annual data reporting
Affiliate Opinion Survey

- “Impact” was the most highly rated scale among respondents
- “Impact” is most strongly related to “Leadership” category
- There is no statistically significant difference between the “Impact” ratings for minority and non-minority institution types
20th Year Results

Pass

Pass with Weakness

Pass with Deficiency

Serious Deficiency
Space Grant demonstrates success in terms of workforce development through student awards, hands-on activities, course development, publications, and retention in STEM disciplines.

Strong leadership, communication, management, and the clear articulation of goals, objectives, measures, and results are characteristics of high performing consortia.
Upcoming Events and Activities

• Ares 1-X Education Launch Forum – October 27, 2009
• NASA Education Summit – November 2, 2009
• Summer of Science – 2010
Consortium Coordination Session

- Longitudinal Tracking results
- 2008 Data Reporting
- Office of Education Performance Measurement System
- Space Grant policy clarifications from recent survey
- NASA One-Stop Shopping Initiative
FY2008 Longitudinal Tracking Results
“Table B” from Progress Reporting

Employed in K-12 STEM Academic Field 3%
Employed in “Other” STEM Academic Field 9%
Employed by NASA/JPL 3%
Graduated and Pursuing Advanced STEM Degree 48%
Employed in STEM (non-aerospace position) 18%
Employed in STEM Aerospace Contractor 13%
Graduated and seeking STEM Employment 6%
Space Grant Longitudinal Tracking

Overall retention in STEM 92.7%

Total STEM employment 1,102
FY2008 Performance Data

<table>
<thead>
<tr>
<th>Category</th>
<th>FY08 Draft</th>
<th>FY08 Revised</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # F/S, HE, RI Direct Participants Reported</td>
<td>11,771</td>
<td>21,503</td>
<td>9,732</td>
</tr>
<tr>
<td>(funded + unfunded)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># students significant investment</td>
<td>3,196</td>
<td>3,401</td>
<td>205</td>
</tr>
<tr>
<td># still in degree program</td>
<td>3,090</td>
<td>3,281</td>
<td>191</td>
</tr>
<tr>
<td># seeking advanced degree</td>
<td>537</td>
<td>575</td>
<td>38</td>
</tr>
<tr>
<td># Eligible for workforce</td>
<td>673</td>
<td>713</td>
<td>40</td>
</tr>
<tr>
<td># Employed NASA</td>
<td>34</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td># Employed Aerospace Industry</td>
<td>148</td>
<td>158</td>
<td>10</td>
</tr>
<tr>
<td># Employed STEM Academia</td>
<td>108</td>
<td>143</td>
<td>35</td>
</tr>
<tr>
<td># Employed STEM Industry</td>
<td>207</td>
<td>215</td>
<td>8</td>
</tr>
<tr>
<td># Employed non-STEM</td>
<td>83</td>
<td>97</td>
<td>14</td>
</tr>
<tr>
<td>Other</td>
<td>58</td>
<td>65</td>
<td>7</td>
</tr>
</tbody>
</table>
FY2008 Performance Data

<table>
<thead>
<tr>
<th>Underrepresented Minority Students</th>
<th>FY08 Draft</th>
<th>FY08 Revised</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # F/S, HE, RI Direct Participants Reported (funded + unfunded)</td>
<td>11,771</td>
<td>21,503</td>
<td>9,732</td>
</tr>
<tr>
<td># underserved/underrep students</td>
<td>2,948</td>
<td>4,588</td>
<td>1,640</td>
</tr>
<tr>
<td># not reporting ethnicity</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td># males</td>
<td>7,396</td>
<td>9,191</td>
<td>1,795</td>
</tr>
<tr>
<td># females</td>
<td>4,296</td>
<td>6,066</td>
<td>1,770</td>
</tr>
<tr>
<td># not reporting gender</td>
<td>82</td>
<td>6,246</td>
<td>6,164</td>
</tr>
</tbody>
</table>
Comparison Data

PART MEASURE – Percentage of student participants employed by NASA, Aerospace contractors, universities and other educational institutions

PART MEASURE – Percentage of undergraduate students who move on to advanced education in NASA-related disciplines

<table>
<thead>
<tr>
<th></th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # F/S, HE, RI Participants Reported</td>
<td>61,942</td>
<td>32,461</td>
<td>21,503</td>
</tr>
<tr>
<td># students signif investment</td>
<td>2,474</td>
<td>3,299</td>
<td>3,401</td>
</tr>
<tr>
<td># still in degree program</td>
<td>1,955</td>
<td>2,979</td>
<td>3,281</td>
</tr>
<tr>
<td># seeking advanced degree</td>
<td>155</td>
<td>432</td>
<td>575</td>
</tr>
<tr>
<td># Eligible for workforce</td>
<td>364</td>
<td>568</td>
<td>713</td>
</tr>
<tr>
<td># Employed NASA</td>
<td>15</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td># Employed Aerospace Industry</td>
<td>0</td>
<td>116</td>
<td>158</td>
</tr>
<tr>
<td># Employed STEM Academia</td>
<td>36</td>
<td>123</td>
<td>143</td>
</tr>
<tr>
<td># Employed STEM Industry</td>
<td>121</td>
<td>141</td>
<td>215</td>
</tr>
<tr>
<td># Employed non-STEM</td>
<td>47</td>
<td>85</td>
<td>97</td>
</tr>
<tr>
<td>Other</td>
<td>145</td>
<td>85</td>
<td>65</td>
</tr>
</tbody>
</table>
PART Measure -- Number of underrepresented and underserved students participating in NASA Education Programs

<table>
<thead>
<tr>
<th></th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # F/S, HE, RI Participants Reported</td>
<td>61,942</td>
<td>32,461</td>
<td>21,503</td>
</tr>
<tr>
<td># underserved/underep students</td>
<td>4,182</td>
<td>5,014</td>
<td>4,588</td>
</tr>
<tr>
<td># not reporting ethnicity</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td># males</td>
<td>0</td>
<td>13,779</td>
<td>9,191</td>
</tr>
<tr>
<td># females</td>
<td>0</td>
<td>9,583</td>
<td>6,066</td>
</tr>
<tr>
<td># not reporting gender</td>
<td>0</td>
<td>0</td>
<td>6,246</td>
</tr>
</tbody>
</table>
Number of new or revised courses targeted at the STEM skills needed by NASA that are developed with Space Grant support.

<table>
<thead>
<tr>
<th></th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY08 Revised</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of courses</td>
<td>17</td>
<td>12</td>
<td>164</td>
<td>147</td>
<td>-17</td>
</tr>
</tbody>
</table>
• Met with CMIS Working Group at the Western Regional Meeting
• Katie attended training in September
• Lateicia and Diane will attend training on October 27
• Still honing in on draft forms
• Meeting with CMIS Working Group on Saturday afternoon
• Timeline still looks <relatively> the same
• Will keep you posted on developments
• Reporting
 • Streamlining – utilization of new OEPM system
 • ACCURATE REPORTING IS CRITICAL
• Citizenship
 • A citizen is a citizen
 • NOT a permanent resident, foreign national, resident alien
• Definition of an “affiliate” – an organization that contributes to the achievement of the consortium objectives; participation in the consortium programs and projects
 • May contribute or participate at different levels
Policy Clarifications

• Equipment (from the NASA Grant Handbook)
 • The use of training grant funds to acquire equipment, or to acquire or construct facilities will not be permitted.
 • Equipment means tangible nonexpendable personal property including exempt property charged directly to the award having a useful life of more than one year and an acquisition cost of $5,000 or more per unit or coherent system.
 • However, consistent with recipient policy, lower limits may be established.
 • examples of which include but are not limited to office equipment and furnishings, reproduction and printing equipment, and automatic data processing equipment.
 • further example -- coherent systems
• Cost-sharing – use of indirect cost waiver
 • *Unrecovered indirect costs may be included as part of cost sharing or matching only with the prior approval of the cognizant NASA grant officer.*
• Direct/Indirect Participants
 • Will work with CMIS Working Group to establish clear definitions
• What else needs clearer definitions?
One Stop Shopping Initiative (OSSI)
The over-arching mission of OSSI is to enhance:

A. **STEM workforce development processes used by NASA Education**, including the Office of Education, Mission Directorates, and NASA Centers that lead to fulfilling the common goal of providing competency-building research opportunities to highly qualified undergraduate and graduate students who are preparing for employment in STEM disciplines at NASA, industry, and academia.

B. The **National branding of NASA’s internship and fellowship opportunities**, supported by numerous funding sources and having three participant “umbrella focuses”
 - Bridge (12th Grade Students)
 - Internships (Undergraduate Students)
 - Fellowships (Graduate Students)

C. The **alignment and integration of business processes** to maximize the efficiencies realized across the NASA Education community.
1. Enhance national branding of NASA’s internship/fellowship opportunities

2. Increase the workforce pipeline of former NASA interns by contributing to the development of the STEM workforce in disciplines needed to achieve NASA’s strategic goals

3. Develop one electronic web based application for students seeking opportunities at NASA.

4. Establish an Agency-wide concept of Broker-Facilitator Corps, that increases the participation of all types of Higher Education institutions, including recruiting and retaining students for opportunities, and to provide career development support that contributes to the success of STEM students
Implement an Agency-wide application and selection process that:

5. Establishes an **Agency-wide standard for minimum eligibility requirements** for students seeking NASA opportunities

6. Increases the pool of STEM opportunities and standardizes the selection process

7. Formalizes the process for collecting requirements for opportunities from scientists and engineers through 3 calls per year

8. Enhances the communication, participation and collaboration between mentors and funding source managers/coordinators
Implement an Agency-wide application and selection process that:

9. Recruits students from all Higher education institution types, including Hispanic Serving Institutions (HSI), Predominately Black Institutions (PBI), Predominately White Institutions (PWI), and Tribal Colleges and Universities

10. Manages the student experience from completion of application through entering the workforce (NASA, Aerospace Contractors, and Academia)

11. Provides feedback to students to improve their success for re-entry and obtains student feedback to improve OSSl procedures
One Stop Shopping Initiative (OSSI) for NASA Internship/Fellowship Opportunities

STRATEGIC MODEL

Building a workforce pipeline for students engaged in STEM research, aerospace education, and space exploration

Nationally brand NASA’s student opportunities

STEM workforce development processes

Recruit, retain and develop

Select, place, and mentor

Workforce entry

Longitudinal study

Mentors, Funding Source Coordinators, Broker-Facilitator Corps & Students

Mentors, Funding Source Managers/Coordinators, Center Panels & Students

Funding Source Managers/Coordinators, Human Capital Staff

Office of Education Performance Management System Staff, Alumni Pool

Key OSSI Partners: Business Management Organization, Broker-Facilitator Corps, NASA Education. NASA Office of Human Capital Management, System Administrator
Key Process Changes

• **Facilitates partnership between key stakeholders**
 • NASA Education, OSSI Business Management, Broker-Facilitator Corps and NASA Office of Human Capital Management

• **Creation of Broker Facilitator Corps Role**
 • Recruit and retain students
 • Notify institutions of NASA opportunities
 • Assist students with application process
 • Ensure student eligibility
 • Increase pool of applicants
 • Provide virtual career development workshops and interactive sessions to help build loyalty

• **Creation of Business Management Role**
 • Ensures overall integration of OSSI
 • Receives, responds, and tracks requests for information
 • Receives and indicates receipt of all transcripts – official and unofficial – previously Grantee/Funding Source Coordinators
Key Process Changes (Con’t.)

- **Identification of NASA internship, fellowship and bridge opportunities**
 - Establish Agency-wide standard minimum eligibility requirements
 - Conduct 3 Agency calls per year (Fall, Spring and Summer) to scientist and engineer mentors for opportunities
 - Enter all NASA internship, fellowship and bridge opportunities in the system (STEM, non-STEM, Center and Mission Directorate unique, & Agency)

- **Application Process**
 - Students will use a single system and the same skill profile to apply for up to five opportunities
 - Students will receive assistance with the application process through Broker-Facilitators
 - Students will have expanded capabilities to build a skill profile, upload unofficial transcripts, request letters of recommendation, and re-enter
• **Selection Process**
 - Mentors will select their top 3 to 5 candidates for a specific opportunity
 - A Center Selection Panel will rank the candidates based on Agency criteria for higher education goals
 - An offer will be first extended to a student electronically and then followed up with a system generated offer letter
 - Students will accept/decline an offer electronically
 - Associate students with a unique identifier once a student accepts an offer

• **Tracking of students from internships/fellowships to workforce entry**
 - Supports the first two pillars of the OSSI model (recruitment, selection, placement, mentoring, retention, and career development)
 - Provides data to support pillars three and four: workforce entry and longitudinal study
Background
AA for Education
Chair
Budget, Reporting, New Initiatives

ECC
OE (Deputy AAs)
Mission Directorates (4)
ARMD, ESMD, SOMD, SMD

Field Center Ed Directors (10)
ARC, DFRC, GRC, GSFC, JPL,
JSC, KSC, LaRC, MSFC, SSC

Functional Offices
EO, Human Cap.
PAO, OLIA, OER
Astro Office

Project Implementation
Field Centers, Grantees,
Contractors