# STEM through the lens of Aviation







#### Bachelor's in Mechanical Engineering

20-year Master Instructor





Project Leader 4-H STEM Programs



**Rich Stowell** 









## Aeronautics

and

Space



# NASA AERONAUTICS: AVIATION AT THE LEADING EDGE

#### SPACE GRANT UNIVERSITY STUDENTS AND FACULTY:

Get to know the people, the ideas and the technology that are driving the revolutionary work done by the first "A" in NASA – NASA Aeronautics.

NASA has made decades of contributions to aviation. Every U.S. commercial aircraft and control tower have NASA-developed technology on

The next great aviation transformations are being designed and engineered right now, from the return of supersonic flight to the emergence of flying cars and electrified aircraft.

#### WHERE ARE YOU IN THIS FUTURE?

Each one-hour webinar will feature conversations with NASA Aeronautics researchers who will talk about the technology and also about their educational and career paths. Students can submit questions for the presenters.

#### REGISTRATION REQUIRED

Online registration for this series will open on August 30, 2019.

Learn more and register at: vsgc.odu.edu/aerowebinars

This series is offered as a partnership between NASA's Aeronautics Research Mission Directorate and the National Space Grant Program and is produced by Old Dominion University.





**Quiet Supersonic** Flight Over Land -**Lowering the Boom** 

> Wednesday, October 2, 2019 7:30 p.m. EDT



Safe Flight for **Drones - Designing** a System for Urban **Air Mobility** 

> Thursday, October 24, 2019 7:30 p.m. EDT



**Electrified Aircraft** -Tackling the Challenges of **Alternative Propulsion** 

> Wednesday, November 6, 2019 7:30 p.m. EST



























2,200

**Public-Use Airports** 

20+
STEM Ecosystems

## Collaborate

Connect



### Glider Trajectory Problem

Glenn Research Center



From Trigonometry:

$$tan(a) = \frac{h}{d}$$

D = Drag L = Lift

From Balance of Forces:

$$L \cos(a) + D \sin(a) = W$$

W = Weight

 $L \sin(a) = D \cos(a)$ 

Measure: height (h), distance (d), and weight (W).



Education
Research
Public Education



