Technology Development for the Kentucky Re-entry Universal Payload System (KRUPS)

J. Devin Sparks and Gabriel I. Myers
Evan Whitmer, Courtney Montague, Nick Khouri, Tyler Nichols, Collin Dietz, Sean Field
Suzanne Smith, PhD
Alexandre Martin, PhD
Special Thanks

- Faculty and students who worked on the KRUPS project, especially the ones who worked directly
 - Dr. Alexandre Martin
 - Dr. Suzanne Smith
 - Jacob Owen
 - Justin Cooper
 - Christen Setters
 - Olivia Schroeder
 - Chris Meek
 - KRUPS Core Team
 - KREM Senior Design Team
 - KRUPS Comm. Senior Design Team
 - KRUPS TPS Senior Design Team

- Financial support for this work was provided by the NASA Kentucky EPSCOR RA NNX13AN04A, NASA Kentucky Space Grant NNX15AR69H, NASA USIP SFRO NNX16AI90A, and the Kentucky Counsel on Post-secondary Education matching awards
Student Involvement

Students involved in:

- **RockOn!** where we learned rocket science thanks to the Colorado, Virginia, and National Space Grant programs
- **Two Sounding Rocket projects:**
 - **KUDOS:** Kentucky Space Grant Team Fellowship with Aug 2017 launch via RockSat-X
 - **KOREVET:** Space Grant USIP with upcoming March 2018 launch via USIP

Students gained hands-on and multidisciplinary experience designing and building space experiments

46 students from UK are involved in both projects

March 2018
Objectives and Motivation

• Provide an affordable and proven technology testbed for re-entry experiments
 • Geometry based off of Deep Space 2
• Provide thermal response data from thermal protection system
 • Flight data is needed:
 • Validation of computational models
 • Ground testing cannot always be extrapolated to real flight
Project Overview

- **Overall Goal**: Launch multiple 11-inch diameter Kentucky Re-entry Universal Payload System (KRUPS) from the ISS
 - Numerous on-board experiments
- Two sounding rocket launches for modular and full system testing
 - KUDOS (Aug 2017)
 - Scaled Prototype (7.5-inch)
 - KOREVET (March 2018)
 - Full scale Prototype (11-inch)
Capsule powers on and data collection begins ~T+194 sec

Iridium and radio power on, begin transmission ~T+197 sec

Capsule ejection ~T+200 sec

Iridium modem attempts to transmit data >T+197 sec

Iridium establishes consistent connection~T+700 sec

Splash down ~T+800 sec

Stable connection altitude ~30 km

Rocket apogee ~150 km

Iridium satellites ~483 km

Transmission complete and power off ~T+900 sec
KUDOS Launch

What worked?
- Capsule did not rotate during launch
- Capsule powered on
- Capsule ejected without damage
- Connected with Iridium Satellites
- GoPros captured ejection

What did not work?
- Door opening caused capsule to shift in KREM
- Capsule hit the inside of KREM during ejection
- No data packets received
KUDOS Launch

Why were no data packets received?

- Center of Gravity may have been too close to Center of Pressure
- Higher spin-rate caused by the impact
- Stable connection was never achieved
- Water leaks after splash-down
- Impact survival
Subsystem Comparison

Thermal Protection System

- High density cork decoy blocks
- 45 degree angled fore-shell

KRUPS capsule geometry

KUDOS capsule

KOREVET capsule
Subsystem Comparison

KRUPS Rocket Ejection Mechanism (KREM)

KUDOS KREM

KOREVET KREM
Future Plans

KOREVET Launch
- Launch scheduled for March 22, 2018
- Recover data packets and compare to CFD models at the University of Kentucky for model validation

NASA EPSCoR ISS Proposal?

![CFD results for KOREVET, provided by Christen Setters](image)
Questions?