NASA GRC-Academia Collaborative Opportunities

M. David Kankam, Ph.D.
University Affairs Officer
NASA Glenn Research Center / Cleveland, OH

Presented at Gt. Midwestern Regional Space Grant Directors Meeting, Lexington/KY

October 7, 2016
Items Covered

- Introduction to GRC
- GRC Competencies
- Representative Opportunities for Collaboration
- University/Higher Ed. Progs. – Pathways for Collaboration
- NASA Higher Education Pipeline Projects
- Key Calendar Dates for University/Higher Ed. Programs
- NASA Internship – Spring 2017 Opportunities @ Glenn
- Noteworthy Websites for Faculty / Students Engagements
- Team Opportunity: University Student Design Challenge
- Contact Information
Plum Brook Station Test Site
(Sandusky)
• 6500 acres
• 11 civil servants and 102 contractors

Lewis Field
(Cleveland)
• 350 acres
• 1626 civil servants and 1511 contractors

As of Jan., 2013
Glenn Core Competencies

Help-Meet GRC commitments/Grow Center in areas critical to its future

- Air-Breathing Propulsion
- In-Space Propulsion and Cryogenic Fluids Management
- Physical Sciences & Biomedical Technologies in Space
- Communications Technology and Development
- Power, Energy Storage and Conversion
- Materials and Structures for Extreme Environments
Representative Opportunities for Collaboration

- **Air-Breathing Propulsion**
 - Aeropropulsion Research & Technology
 - Ascent & Thermal Propulsion; Thermal Systems; Engine Combustion
 - Propulsion Systems; Combustion and Reaction Physics
 - Turbomachinery & Turboelectric Systems; Acoustics; Icing
 - Cross-Cutting Engineering Disciplines
 - Fluid & Cryogenics Systems; Thermal Systems
 - Multidisciplinary Research [Physical Sciences & Biomedical Technologies in Space]
 - Fluid Physics & Transport, and Combustion Physics & Reacting Processes
 - Long-Term Collaboration Topics:
 - Aviation safety improvements with advanced fuels / Green fuels for aviation

- **In-Space Propulsion Systems & Technologies**
 - Electric & Chemical Propulsion Systems
Representative Opportunities for Collaboration

- **Communications Technology and Development – Elements are:**
 - **Space Comms. (SpaceComm) & Aeronautics Comms. (AeroComm)**
 - Networks, Architectures & Systems Integration; Information & Signal Processing; Advanced High Frequency; Optical Commns.
 - **Intelligent Systems – Cross-Cutting Competencies**
 - Expertise in:
 - Optics & Photonics; Smart Sensors Systems; Instrumentation-Electronic;
 - Controls – Dynamic System Modeling & Controls
 - **Areas for Potential Collaboration**
 - Advanced RF Antenna & Optical Technologies (Novel Optical Comm. Architectures – Increase data rate from Mars to Earth, 6Mbps to 250Mbps)
 - Cognitive Radio & Signal Processing Technologies
 - Smart Sensors and Electronic Systems Technologies
 - Control, Simulation & Embedded Hardware Technologies
Representative Opportunities for Collaboration

- **Power, Energy Storage and Conversion**
 - Power Architecture, Mgt. & Distribution;
 - Photovoltaic & Electrochemical Systems
 - Thermal Energy Conversion;

- **Topics for Potential Collaboration**
 - Photovoltaics for low intensity and low temperature operation
 - Concepts for removal of dust from Lunar or Mars surface solar arrays
 - Solid oxide fuel cells with on-cell reforming of methane
 - High Efficiency solid-state heat-to-electricity conversion
 - Autonomous control & fault management/recovery of space power systems
 - Radiation-tolerant, high-voltage (300-600V) SiC power electronics
Representative Areas of Engagement & Collaboration - cont’d

• Materials and Structures for Extreme Environments
 - High Temp. Materials (Ceramic Matrix Composite, Thermal Protection Seal)
 - Electric Propulsion Materials (High Pwr. Density Elec. Motors SiC Semiconductor)
 - Lightweight Concepts (Aerogel, Nanomaterials)
 - Mechanisms and Drive Systems (Shape Memory Alloy-Based Actuation)
 - Computational Modelling
 - Flight Structures (Low Impact Docking Seal, Vibration Testing)

Potential Opportunities for Collaboration
 - Multifunctional materials (For sensing, thermal mgt. and energy storage)
 - Big data analytics tools-based computational modeling of materials
 - Modeling of fabrication processes for composite materials
 - Advanced magnetic materials
 - Multiscale modeling of materials and structures
University/Higher Education Programs – Pathways for Collaboration

University / HE Programs
University Affairs Officer, Dr. Mark (Dave) Kankam
216-433-6143

Vanessa Webbs, PM-Internships & Scholarships
Lynne Sammon, Ed. Progs. Specialist

Internships
- High School
- UG/Grad
- Externally & Internally Funded

Scholarships
- Aero Scholarship Program (ASP)

NASA Space Academy at Glenn
GRC Mentors

NASA MARTI at Glenn
GRC Mentors

NASA Glenn Faculty Fellowship Program
GRC Colleagues

SGC/EPScOR (Experimental Program to Stimulate Competitive Research)
GRC Collaborators

National Space Grant College and Fellowship Program
GRC Colleagues

NASA Postdoctoral Program (NPP)
GRC Advisors

MARTI – Multidisciplinary Aero Research Team Initiative

Interns/Research Associates (Undergraduates and Graduates)

Graduates
NASA Higher Education Pipeline Projects - Next generation scientists and engineers, to replenish the STEM workforce

- **LERCIP (Freshman-Grads)**
- **NIP/ASP (Undergrads-Grads)**
- **Academy & MARTI (Rising Snrs.-Grads)**
- **NFP/JGFP (M.S.-Ph.D)**
- **NPP (Postdocs)**
- **NGFFP (STEM Faculty)**

Pathways (Undergrads & Grads)

Workforce
Important Calendar Dates of Higher Ed. Progs. - by Session

• **Internship Application Period** (Apply at- https://intern.nasa.gov)
 - Spring Appln.: Early June– Mid Oct.; Session- Early Jan.-End Apr. (16 wks)
 - Summer Appln.: Early Nov.– Early Mar.; Session– Early June – Mid Aug. (10)
 - Fall Appln: Early March- End May; Session – End Aug.-Mid Dec. (16 wks)
 - Year-Long Appln: Any time; Session -16 wks + (Single or multiple terms)

• **Scholarship Application Period for Academic Year 2016-2017**
 - Opening Date – Nov’/16 target; Profile & Update at - https://intern.nasa.gov

• **Student Fellowship Application Period for Academic Year 2016-2017**
 - Opening Date – Nov’/16 target; Profile & Update at - https://intern.nasa.gov
 - Apply at - https://nspires.nasaprs.com/external/solicitations/summary

• **Glenn Faculty Fellowship Prog.-** http://www.nasa.gov/centers/glenn/education
 - Applns. Date: Mid Oct. thru end Jan.’/17; Session: Early June-Mid Aug

• **NASA Space Academy at Glenn**
 - https://academy.grc.nasa.gov (Apply at- https://intern.nasa.gov, by 1/30)

• **NASA Multidisciplinary Aeronautics Research Team Initiative (MARTI)**
 - https://academy.grc.nasa.gov (Apply at- https://MARTIapp.com, by 1/30)
<table>
<thead>
<tr>
<th>Opportunity Title</th>
<th>Core Competency</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature Metallics for Hypersonic Vehicle Applications</td>
<td>Air Breathing Propulsion and Materials Structures for Extreme Environments</td>
</tr>
<tr>
<td>Exploring the Depths of Kraken Mare - Thermal Analysis for the Saturn Titan Submarine</td>
<td>Air Breathing Propulsion; Communications Technology and Development; and In-Space Propulsion and Cryogenic Fluids Management</td>
</tr>
<tr>
<td>Cryogenic Propellant Transfer Models for Space Propulsion Systems</td>
<td>Air Breathing Propulsion; Communications Technology and Development; and In-Space Propulsion and Cryogenic Fluids Management</td>
</tr>
<tr>
<td>Modeling and Testing of Novel Cryogenically Cooled Hybrid Electric Aircraft System</td>
<td>Air Breathing Propulsion; Communications Technology and Development; In-Space Propulsion and Cryogenic Fluids Management; and Power, Energy Storage and Conversion</td>
</tr>
<tr>
<td>Testing of Additively Manufactured Hall Thruster</td>
<td>In-Space Propulsion and Cryogenic Fluids Management</td>
</tr>
<tr>
<td>Permeability Characterization of Aerogel Composites</td>
<td>Materials and Structures for Extreme Environments</td>
</tr>
<tr>
<td>Gear Research for Aerospace Applications</td>
<td>Materials and Structures for Extreme Environments</td>
</tr>
<tr>
<td>Aerogels for Conformal Antennas</td>
<td>Materials and Structures for Extreme Environments</td>
</tr>
<tr>
<td>Opportunity Title</td>
<td>Core Competency</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Polymer Matrix Composite Fabrication and Testing</td>
<td>Materials and Structures for Extreme Environments</td>
</tr>
<tr>
<td>Lumped Parameter Models of the Cardiovascular and Central Nervous System for VIIP</td>
<td>Physical Sciences and Biomedical Technologies in Space</td>
</tr>
<tr>
<td>Development of a High Power, High Efficiency, Class-F Type, Ka-Band, Gallium Nitride (GaN), Solid-State Power Amplifier (SSPA)</td>
<td>Communications Technology and Development</td>
</tr>
<tr>
<td>Development of a Ka-Band Offset fed Parabolic Reflector Antenna with a Planar Array Feed System</td>
<td>Communications Technology and Development</td>
</tr>
<tr>
<td>Turbomachinery Simulations using High-Order Discontinuous Galerkin Methods</td>
<td>Air-Breathing Propulsion</td>
</tr>
<tr>
<td>Air temperature probe characterization for icing applications</td>
<td>Air-Breathing Propulsion</td>
</tr>
<tr>
<td>Lithium-Air Batteries for Electric Aircraft</td>
<td>Power, Energy Storage and Conversion</td>
</tr>
<tr>
<td>Polymer Aerogel Synthesis</td>
<td>Materials and Structures for Extreme Environments</td>
</tr>
</tbody>
</table>
Noteworthy Websites for Faculty/Student Engagements

*NIFS Application ➔ OSSI (One Stop Shopping Initiative)
- http://intern.nasa.gov/

*NASA Space Academy at Glenn
- https://academy.grc.nasa.gov (Application at OSSI)

*NASA Multidisciplinary Aeronautics Research Team Initiative (MARTI)
- https://MARTIapp.com

*NASA Postdoctoral Program (NPP)
- https://npp.usra.edu/

*NASA Glenn Faculty Fellowship Program (NGFFP)
- http://www.nasa.gov/centers/glenn/education/index.html

*NASA Space Technology Research Fellowships / Grants
*National Space Grant College & Fellowship Program /EPSCoR
 • http://www.nasa.gov/offices/education/programs/national/spacegrant/home/index.html

*NASA Solicitation & Proposal Integrated Review & Evaluation System (NSPIRES)
 ➢ Includes information on:
 o NASA MUREP Institutional Research Opportunity (MIRO)
 • https://nspires.nasaprs.com/external/solicitations/summary

* NASA Research Announcements (NRAs)
 ➢ Includes Education Opportunities in NASA STEM (EONS)
Team Opportunity: University Student Design Challenge

Goals/Objectives: Engage teams of STEAM-major students to conceptually design air vehicles to transport passengers from nodes in urban cities—
- Alleviate traffic congestion, respiratory health,

Purpose: Truncate nat’l & global urbanization issues of travel congestion, noise, safety from disasters, etc.
- Efficiently connect travelers to, & within nodes

Approach: Consider aviation-based multimodal outer-belt concept
- Air vehicles leave (hwy, a’port) nodes around city, with short hops between nodes
- Operate vehicles from Metropolitan Areas

Consider: Definition of performance reqts. (range, air speed, payload); Hybrid or Fully Electric vehicle; Propulsion system architecture; VTOL & STOL; Piloted or UAV

Milestones: Challenge Duration-Spring’17; Teams Formation – 11/23/’16
- Culmination Event – 4/21/’17
Contact Information

* University Affairs Officer – GRC
Director of Space Academy & MARTI @ Glenn
NASA Glenn Research Center,
21000 Brookpark Rd., MS 7-4
Cleveland, OH 44135

Phone: Voice⇒(216) 433-6143; Fax⇒-3678

E-mail: Mark.D.Kankam@nasa.gov

• Glenn Office of Education Website (For Program Details):
 http://www.nasa.gov/centers/glenn/education