

Two Space Grant Supported Perspectives on Research: A Continuous Trailing Edge Flap Design and Automated Landing Systems for Unmanned Air Vehicles

Benjamin León Georgia Tech GA Space Grant Consortium



- Continuous Trailing Edge Flap Design
 - Background
 - Model Design
 - Electronics
 - Tests and Results
- Automated Landing System
 - Background
 - Software in the Loop Tests
 - Hardware Interface
 - Ground Tests

Aerodynamic Characterization of a Continuous Trailing Edge Flap Design

Mentors:

Karen Taminger Dr. Elizabeth Ward

2013 Aeronautics Academy

Travyn Mapes

Utah State University (Mechanical and Aerospace Engineering)

Mark Agate

University of Miami (Aerospace Engineering)

Mark Fellows

Miami University (Computational Science and Engineering)

Jane Fleming

Fort Lewis College (General Engineering, Mechanical Emphasis)

Joey DeCarlo

University of Minnesota (Aerospace Engineering and Mechanics)

Sean Spillane

City College of New York (Mechanical Engineering)

Brittney Lipp

Iowa State University (Aerospace Engineering)

Taylor Ray

Colorado School of Mines (Electrical Engineering)

Benjamin León

Georgia Institute of Technology (Aerospace Engineering)

Nick Harvey

University of Washington (Aeronautics and Astronautics)

James Tennant

Wichita State University (Aerospace Engineering)

Russell Gillespie

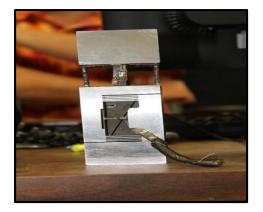
West Virginia Wesleyan College (Applied Physics)

CTEF: Background

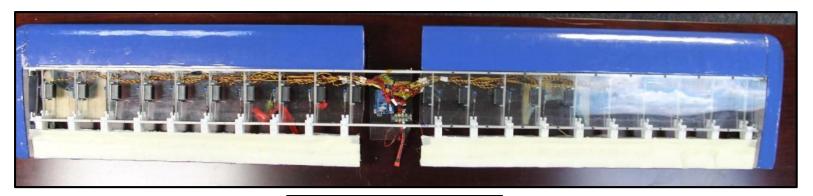
Credit: Richardgm

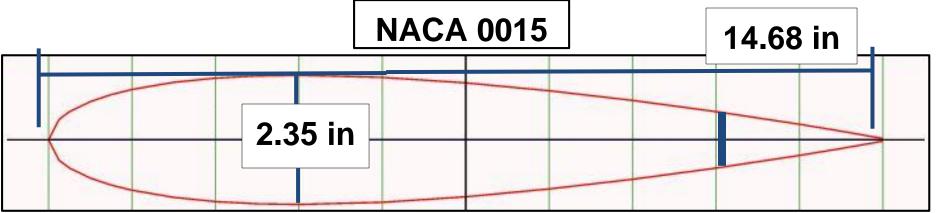
- Conventional flap design
 - Uniformly vary wing camber to alter lift and drag characteristics

- Continuous Trailing Edge Flap design (CTEF)
 - There are no 'breaks' in the trailing edge
 - Camber can be varied along the span, along the chord, or a combination of both
 - N+3 technology¹


CTEF: Wing Design

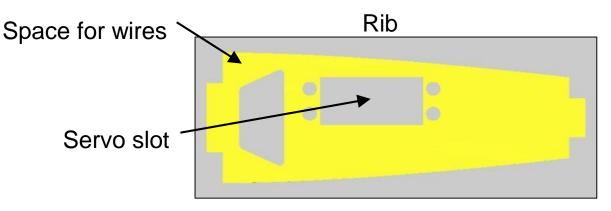
- Interchangeable control surfaces
- 6.5 ft. span maximum
- Accommodate many servos/electronic components
- High degree of stiffness
- Wind tunnel balance limits

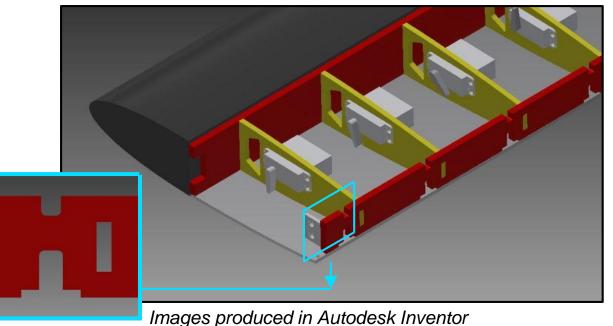


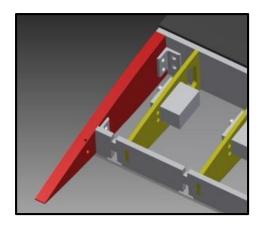


CTEF: Wing Design

- Airfoil
- Span
- Planform/Taper





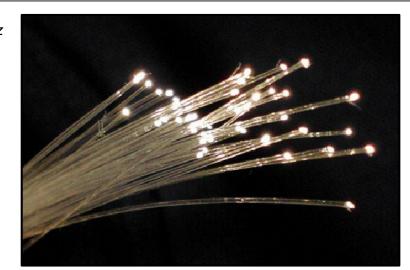

CTEF: Wing Design

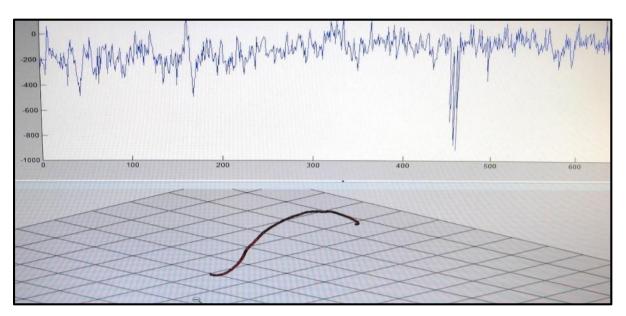
- Rib shape
- Back spar Servo slot
 compatibility
- Foam leading edge

CTEF: Electronics

Hardware considerations:

- Compatibility
- Control multiple designs
- Strength of servos



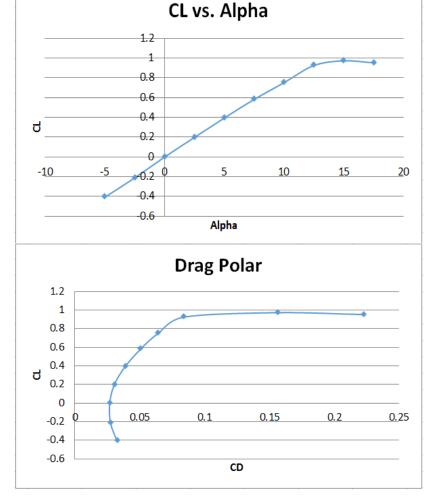

CTEF: Electronics

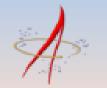
Credit: BigRiz

Fiber Optics

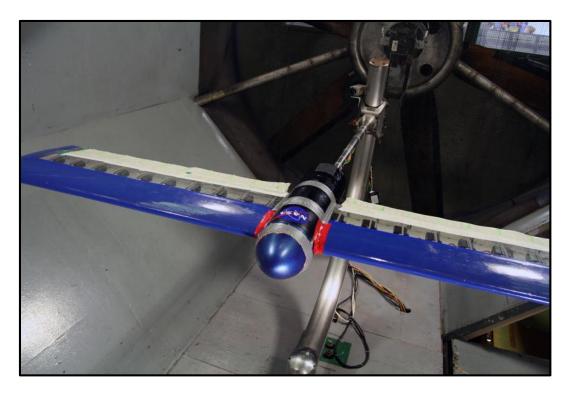
- Strain gauge sensing
- Shape sensing tri-core
- Integrate fibers into the wing and tunnel systems
- Data collection

CTEF: Finger Design




CTEF: Data Analysis

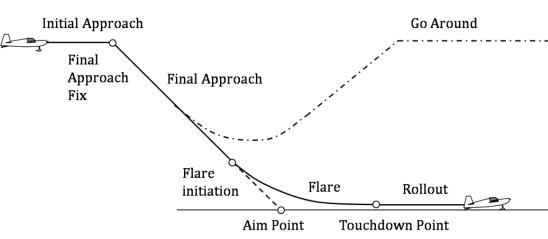
- $C_{L_{max}} = 0.927$ $C_{D_0} = 0.025$
- Error: <u>+</u>9.56% at • 95% confidence interval
- NACA0015
 - $0.9 < C_{l_{max}} < 1.4^4$ $0.005 < C_{d_0} < 0.03^4$



- Design and build objectives met
 - Conventional flap/aileron test as control
- Two and a half days of successful wind tunnel testing

Development and Integration of Automated Landing Systems for Unmanned Air Vehicles

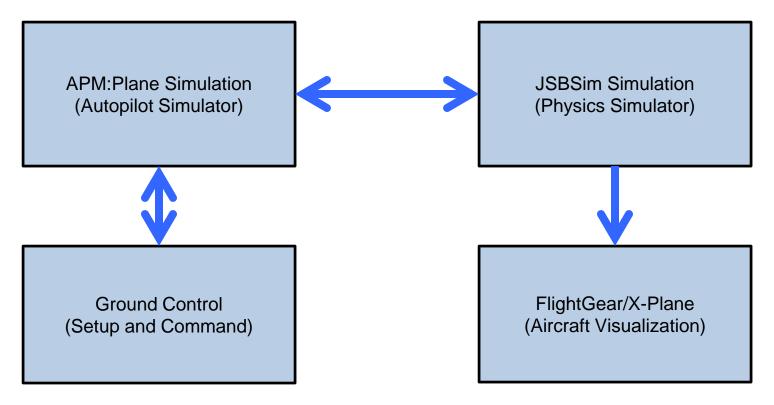
Mentors: Patrick Quach Dr. Elizabeth Ward



27 February 2015

Auto landing: Overview

- Objective
 - Develop and integrate an automated landing system for the Edge 540 aircraft from APM software and hardware
- Challenges to overcome
 - Edge 540 aircraft in a "stand down" state
 - Testing the system without an airframe



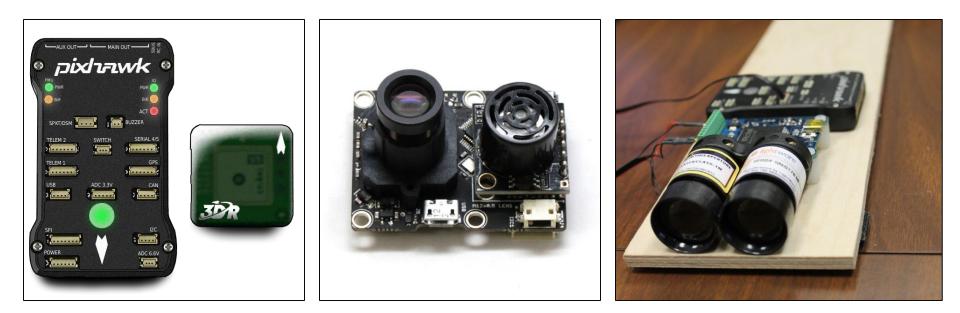
Auto landing: Software in the Loop (SITL)

- What is it?
 - A standalone software based testing method
- How does it work?

Auto landing: SITL

 Independent of hardware used

Safe and reliable


 Dozens of simulations can be run at once

- Solid understanding of hardware abstraction
- Difficult to alter or add sensor emulation
- ort SITL state via MAVLink oid SITL::simstate send(mavlink channel t chan) 1 8 🔤 🜒 11:50 AM double p, q, r; float yaw; // we want the gyro values to be directly comparable to the // raw imu message, which is in body frame convert body frame(state.rollDeg, state.pitchDeg, state.rollRate, state.pitchRate, state.yawRate, &p, &q, &r); // convert to same conventions as DCM yaw = state.yawDeg; if (yaw > 180) { yaw -= 360; mavlink msg simstate send(chan, ing nav command ID #10 ToRad(state.rollDeg), ToRad(state.pitchDeg), ToRad(yaw), state.xAccel, state.yAccel, state.zAccel, p, q, r, state.latitude*1.0e7, state.longitude*1.0e7);

- Software baseline: APM:Plane 3.0.1
- Hardware used:
 - 3DR: Pixhawk, GPS, Telemetry radio, and Optical Flow Sensor
 - LightWare SF02/F Laser Rangefinder

GEORGIA

Space

Consortium

Auto landing: Ground Test

- All terrain RC cars used
 - No airframe available at the time
- A Hangar door was used as the "ground"
- Research Outcomes:
 - Software in the Loop success
 - Laser interference characterized
 - Ground testing method developed

19

References

- Follen, Gregory, Rich Wahls, and Nateri Madavan. Subsonic Fixed Wing Project Overview of Technical Challenges for Energy Efficient, Environmentally Compatible Subsonic Transport Aircraft (n.d.): n. pag. 9 Jan. 2012. Web.
- Kaul, Upender K., and Nhan T. Nguyen. Drag Optimization Study of Variable Camber Continuous Trailing Edge Flap (VCCTEF) Using OVERFLOW. Proc. of 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA. Web. http://www.nas.nasa.gov/assets/pdf/papers/Kaul_DragOptimizationStudy_Aviation2014 .pdf>.
- 3. DPATE. *RC Groups*. N.p., n.d. Web. <. http://www.rcgroups.com/forums/showthread.php?t=1610771&page=45>.
- 4. "UIUC Airfoil Data Site." *UIUC Airfoil Data Site*. N.p., n.d. Web. <u>http://m-selig.ae.illinois.edu/ads/coord_database.html</u>.

References

Raymer, Daniel. Aircraft Design: A Conceptual Approach. 5th. Reston, VA: AIAA, 2012. Print.

Upload.wiki.media.org/wikimedia/commons/4/48/fiberoptic.jpg

Barlow, Jewel B., William H. Rae, and Alan Pope. Low-speed Wind Tunnel Testing. Third ed. New York: Wiley, 1999. Print.

ABS & Polycarbonate http://www.makergeeks.com/ta618ny3dprf.html

Nylon http://www.makergeeks.com/ta618ny3dprf.html

3D Printer http://store.makerbot.com/replicator2x.html

Phillips, Warren F.. "Trailing-Edge Flaps and Section Flap Effectiveness." *Mechanics of flight*. Hoboken, N.J.: Wiley, 2004. . Print.

Norris, Rachel King. "Ideal Lift Distributions and Flap Angles for Adaptive Wings." *Journal of Aircraft*: 562-571. Print. Jepson , Jeffrey K. , and Ashok Gopalarathnam. "Computational Study of Automated Adaptation of a Wing with Multiple Trailing-Edge Flaps." *AIAA* 2005: n. pag. Web.

Monner, H.P., D. Sachau, and E. Breitbach. "Design Aspects of the Elastic Trailing Edge for an Adaptive Wing." *Structural Aspects of Flexible Aircraft Control* MP-36: 14-1:8. Web.

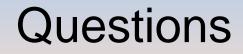
Abdulrahim, Mujahid, and Rick Lund. "Investigating Segmented Trailing-Edge Surfaces for Full Authority Control of a UAV." *AIAA*: n. pag. Web.

http://www.bestinnovativesource.com/wp-content/uploads/2013/04/Aircraft-reference-system.jpg http://www.aerospaceweb.org/question/aerodynamics/q0194.shtml

References

Auto Land Testing Using UltraStick 120 - V1.2." Upenn. May 2014

Pixhawk with GPS." DIYDrones, 1 Jan. 2014. Web. 4 Aug. 2014. http://api.ning.com/files/uY3PJt2fxPyTQr26E4nawU8kEwzjWX*dOnZhblfvWp1I1sXpPvM9xaFg2E53LVlg79aeq2crddtNZ5Ua-C5pJUkx8ImgG3CZ/1.png


Setting up SITL on Linux." *Developer*. APM Multiplatform Autopilot, n.d. Web. 4 Aug. 2014. http://dev.ardupilot.com/wiki/setting-up-sitl-on-linux/

Setting up SITL on Windows." *Developer*. APM Multiplatform Autopilot, n.d. Web. 4 Aug. 2014. http://dev.ardupilot.com/wiki/setting-up-sitl-on-windows/

Short, Jason. "SITL - ardupilot-mega." *SITL*. N.p., 1 Jan. 2013. Web. 4 Aug. 2014. https://code.google.com/p/ardupilot-mega/wiki/SITL

Smalling, Kyle. "Edge Panorama." NASA. Dec. 2013.

