NDSU AIAA

- Started in 2009
- Mission: To join students interested in all things related to aviation.
- Main Focus: Design Build Fly with Senior Design Group

- Side Projects:
 - MAV Competition
 - CANSAT Competition

- Members: >15 & Growing
Design, Build, Fly

- Sponsored by AIAA, Cessna, & Raytheon
- Started in 1996-97
- Mission: “Students teams will design, fabricate, and demonstrate the flight capabilities of an unmanned, electrical powered, radio controlled aircraft which can best meet the specified mission profile.”
 - Mission profile changes every year
- Scoring: Balanced between Report Score and scoring of the Three Missions

![Flight Course Diagram]
NDSU DBF 2011 & 2012

- 2011 First Year
 - Suitcase Mission
 - 32\(^{nd}\) of 82

- 2012 without Senior Design
 - Water Drop Mission
 - 37\(^{th}\) of 68
NDSU DBF 2013

- Mission 1: Timed Ferry Flight
 - Complete as many laps as possible in 4 minutes
- Mission 2: Stealth Mission
 - Complete 3 laps with 4 internal rockets
- Mission 3: Strike Mission
 - Complete 3 laps with one of 6 rocket configurations
 - Configurations include Internal and external rockets
Major Constraints

- Contest Constraints
 - Rockets ballast to specific weights
 - 30ft square take off area
 - 1.5 lb max battery weight
 - 20 Amp max current

- Performance Constraints
 - Light weight
 - Aerodynamic shape

- Feasibility Constraints
 - Easily manufacturable and repairable
 - Detachable wing

- Budget
Design, Build

- Model
- Testing
 - FEA
 - CFD
- Balsa
- Carbon Fiber
- Monokote
- 3D Printing
Fly
- Completed
- 36th out of 81
NDSU DBF 2014

- Mission 1: Timed Ferry Flight
 - Complete as many laps as possible in 4 minutes
- Mission 2: Maximum Load Mission
 - Complete 3 laps with wooden blocks
- Mission 3: Emergency Medical Mission
 - Complete 3 laps with patient and gurney blocks
- Ground Taxi Mission
Design, Build

- Model
- Testing
- FEA
- XFLR
Fly

- Crashed 1st Mission
- 69th out of 80
MAV Competition

- **Mission:** Create MAV less than 500 grams and 1.5 feet across to autonomously find a target in a field
- **Scoring:**
 - Form-unique, innovative, and robust
 - Function-best flight and autonomy
- Received Honorable Mention: $600
CANSAT Competition

- Mission: “simulate a sensor payload traveling through a planetary atmosphere sampling the atmospheric composition during descent.”
- Container & Payload must deploy from rocket at specific altitudes
- Payload must harness its own energy
- Both must send and store data
- Placed 25th