Developing of the Next Generation Miniaturized Laser Heterodyne Radiometer

AJ DiGregorio
Overview

• What? Why?
• The Instrument
• Summer work
• Future work
• Questions
What? Why?

- Miniaturized Laser Heterodyne Radiometer (LHR)
- CO₂ and CH₄ measurement
- Low-cost
- High-portability
- Interfacing with existing systems
What? Why?

- Greenhouse gas contribution to climate change
 - CH₄ level-off in 90’s/00’s
- Global anomalies
- Absent data in Asia, Amazon, and Polar Regions
The Instrument

- **Next-Gen Mini-LHR**
 - Ground based
 - In conjunction with Aeronet systems in place worldwide

- **LHR Cube**
 - Cubesat version
 - Focus on polar regions
 - Verify larger satellite missions
The Instrument | How It Works

Sunlight that has undergone absorption by the trace gas is collected with collimation optics connected to an AERONET sun tracker.

Signals are mixed in a fast photoreceiver (an InGaAs detector) to produce a beat signal.

The mole fraction of the trace gas in the atmospheric column is proportional to the beat signal amplitude – measured on a lock-in amplifier.

Sunlight is superimposed with laser light at a near-by frequency in a single mode fiber coupler.

The beat signal is amplified, filtered, measured with an RF detector, and further amplified.
The Instrument
The Instrument | Solutions

• Reduction of component size, removal of chopper & lock-in amps
• No lock-in amps in 2nd generation device
• Recent atmospheric correction algorithms yield \(\sim 6\text{ppm}\) difference
Summer Work

• Development of a rapid-scan
• Miniaturizing the mini-LHR
 – Simplifying RF signal chain
 – Laser control with DAQ card
 – Removal of optical chopper
• Construction of Satlink station for remote data acquisition
• Data analysis program written
• NextGen breadboarded and tested
Current/Future Work

- Solar array construction for complete off-grid data collection
- Design and manufacturing of parts using 3d printing technology
 - Cubesat and NextGen
- Finalize construction of NextGen
- Alaska this summer!
 - With next generation device
Thanks to…

• DC Spacegrant (Megan Kemble and Eric Day)
• Demetrious Poulios(AU) + Emily Wilson(NASA)
• American University Physics Department